The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
|
|
%module PolynomialT %{ #include <carl/core/MultivariatePolynomial.h> #include <carl/core/RationalFunction.h> #include "gmp.h" #include "gmpxx.h"
typedef mpq_class Rational;
typedef carl::Term<Rational> Term; typedef carl::MultivariatePolynomial<Rational> Polynomial; typedef carl::RationalFunction<Polynomial> RationalFunction;
typedef unsigned int uint; typedef std::pair<carl::Variable,uint> VarIntPair; %}
%include "std_string.i"
//TODO: for 32 bit support this has to be changed.. //%import <stddef> //for size_t maybe? typedef long unsigned int size_t; //this should be okay for 64 bits at least
%import "rational.i" %import "variable.i" %import "term.i" %import "monomial.i" %import "rationalfunction.i"
%include "std_vector.i" typedef mpq_class Rational; typedef carl::RationalFunction<Polynomial> RationalFunction;
namespace std { %template(VarVector) vector<carl::Variable>; }
namespace carl {
template<typename Coeff> class MultivariatePolynomial { public: typedef Coeff CoeffType; typedef Coeff NumberType; //ATTENTION: This is only correct if polynomials are never instantiated with a type that's not a number explicit MultivariatePolynomial(const carl::Term<Coeff>& t); explicit MultivariatePolynomial(const std::shared_ptr<const carl::Monomial>& m); explicit MultivariatePolynomial(Variable::Arg v); explicit MultivariatePolynomial(const Coeff& c); const Coeff& constantPart() const; template<typename SubstitutionType = Coeff> SubstitutionType evaluate(const std::map<Variable, SubstitutionType>& substitutions) const; std::size_t totalDegree() const; std::size_t degree(Variable::Arg var) const; size_t nrTerms() const; std::string toString(bool infix=true, bool friendlyVarNames=true) const;
size_t size() const;
%extend{ bool equals(const MultivariatePolynomial<Coeff>& other) { return *$self == other; }
bool notEquals(const MultivariatePolynomial<Coeff>& other) { return *$self != other; }
std::vector<carl::Variable> gatherVariables() const { std::set<carl::Variable> asSet = $self->gatherVariables(); return std::vector<carl::Variable>(asSet.begin(),asSet.end()); }
Polynomial add(const Polynomial& rhs) { return *$self+rhs; }
Polynomial add(const Term& rhs) { return *$self+rhs; }
Polynomial add(const Monomial::Arg& rhs) { return *$self+rhs; }
Polynomial add(carl::Variable::Arg rhs) { return *$self+rhs; }
Polynomial add(const Rational& rhs) { return *$self+rhs; }
Polynomial sub(const Polynomial& rhs) { return *$self-rhs; }
Polynomial sub(const Term& rhs) { return *$self-rhs; }
Polynomial sub(const Monomial::Arg& rhs) { return *$self-rhs; }
Polynomial sub(carl::Variable::Arg rhs) { return *$self-rhs; }
Polynomial sub(const Rational& rhs) { return *$self-rhs; }
Polynomial mul(const Polynomial& rhs) { return *$self*rhs; }
Polynomial mul(const Term& rhs) { return *$self*rhs; }
Polynomial mul(const Monomial::Arg& rhs) { return *$self*rhs; }
Polynomial mul(carl::Variable::Arg rhs) { return *$self*rhs; }
Polynomial mul(const Rational& rhs) { return *$self*rhs; }
RationalFunction div(const RationalFunction& rhs) { return RationalFunction(*$self) / rhs; }
RationalFunction div(const Polynomial& rhs) { return RationalFunction(*$self) / rhs; }
RationalFunction div(const Term& rhs) { return RationalFunction(*$self) / rhs; }
RationalFunction div(const Monomial::Arg& rhs) { return RationalFunction(*$self) / rhs; }
RationalFunction div(carl::Variable::Arg rhs) { return RationalFunction(*$self) / rhs; }
Polynomial div(const Rational& rhs) { return *$self / rhs; }
Polynomial pow(uint exp) { return $self->pow(exp); }
Polynomial neg() { return *$self*Rational(-1); }
Term getItem(std::size_t index) { return *($self->begin()+index); }
}
}; }
%include "std_map.i"
namespace std { %template(VarRationalMap) map<carl::Variable,Rational>; }
%template(evaluate) carl::MultivariatePolynomial::evaluate<Rational>; %template(Polynomial) carl::MultivariatePolynomial<Rational>;
|