Browse Source

finished testing setup

main
sp 11 months ago
commit
b3be734b8f
  1. 88
      plotting.py
  2. 68
      simulation.py
  3. 376
      test_model.py
  4. 135
      translate.py

88
plotting.py

@ -0,0 +1,88 @@
#!/usr/bin/python3
import visvis as vv
import numpy as np
import time
def translateArrayToVV(array):
scaling = (float(array[0][1]) - float(array[0][0]), float(array[2][1]) - float(array[2][0]), float(array[4][1]) - float(array[4][0]))
translation = (float(array[0][0]) + scaling[0] * 0.5, float(array[2][0]) + scaling[0] * 0.5, float(array[4][0]) + scaling[0] * 0.5)
return translation, scaling
class VisVisPlotter():
def __init__(self, stateValuations, goalStates, deadlockStates, stepwise):
self.app = vv.use()
self.fig = vv.clf()
self.ax = vv.cla()
self.stateColor = (0,0,0.75,0.4)
self.failColor = (0.8,0.8,0.8,1.0) # (1,0,0,0.8)
self.goalColor = (0,1,0,1.0)
self.stateScaling = (2,2,2) #(.5,.5,.5)
self.plotedStates = set()
self.plotedMeshes = set()
self.stepwise = stepwise
auxStates = [0,1,2,25518]
self.goals = set([(stateValuation.x, stateValuation.y, stateValuation.z) for stateId, stateValuation in stateValuations.items() if stateId in goalStates and not stateId in auxStates])
self.fails = set([(stateValuation.x, stateValuation.y, stateValuation.z) for stateId, stateValuation in stateValuations.items() if stateId in deadlockStates and not stateId in auxStates])
def plotScenario(self, saveScreenshot=True):
for goal in self.goals:
state = vv.solidBox(goal, scaling=self.stateScaling)
state.faceColor = self.goalColor
for fail in self.fails:
state = vv.solidBox(fail, scaling=self.stateScaling)
state.faceColor = self.failColor
self.ax.SetLimits((-16,16),(-10,10),(-7,7))
self.ax.SetView({'zoom':0.025, 'elevation':20, 'azimuth':30})
if saveScreenshot: vv.screenshot("000.png", sf=3, bg='w', ob=vv.gcf())
def run(self):
self.ax.SetLimits((-16,16),(-10,10),(-7,7))
self.app.Run()
def clear(self):
axes = vv.gca()
axes.Clear()
def plotStates(self, states, coloring="", removeMeshes=False):
if self.stepwise and removeMeshes:
self.clear()
self.plotScenario(saveScreenshot=False)
if not coloring:
coloring = self.stateColor
plotedRegions = set()
for state in states:
if state in self.plotedStates: continue # what are the implications of this?
coordinates = (state.x, state.y, state.z)
print(f"plotting {state} at {coordinates}")
if coordinates in plotedRegions: continue
state = vv.solidBox(coordinates, scaling=(1,1,1))#(0.5,0.5,0.5))
state.faceColor = coloring
plotedRegions.add(coordinates)
if self.stepwise:
self.plotedMeshes.add(state)
self.plotedStates.update(states)
def takeScreenshot(self, iteration, prefix=""):
self.ax.SetLimits((-16,16),(-10,10),(-7,7))
#config = [(90, 00), (45, 00), (0, 00), (-45, 00), (-90, 00)]
config = [(45, -150), (45, -100), (45, -60), (45, 60), (45, 120)]
for elevation, azimuth in config:
filename = f"{prefix}{'_' if prefix else ''}{iteration:03}_{elevation}_{azimuth}.png"
print(f"Saving Screenshot to {filename}")
self.ax.SetView({'zoom':0.025, 'elevation':elevation, 'azimuth':azimuth})
vv.screenshot(filename, sf=3, bg='w', ob=vv.gcf())
def turnCamera(self):
config = [(45, -150), (45, -100), (45, -60), (45, 60), (45, 120)]
self.ax.SetLimits((-16,16),(-10,10),(-7,7))
for elevation, azimuth in config:
self.ax.SetView({'zoom':0.025, 'elevation':elevation, 'azimuth':azimuth})
if __name__ == '__main__':
main()

68
simulation.py

@ -0,0 +1,68 @@
import sys
from enum import Flag, auto
import numpy as np
class Verdict(Flag):
INCONCLUSIVE = auto()
PASS = auto()
FAIL = auto()
class Simulator():
def __init__(self, allStateActionPairs, strategy, deadlockStates, reachedStates, bound=3, numSimulations=1):
self.allStateActionPairs = { ( pair.state_id, pair.action_id ) : pair.next_state_probabilities for pair in allStateActionPairs }
self.strategy = strategy
self.deadlockStates = deadlockStates
self.reachedStates = reachedStates
#print(f"Deadlock: {self.deadlockStates}")
#print(f"GoalStates: {self.reachedStates}")
self.bound = bound
self.numSimulations = numSimulations
allStates = set([state.state_id for state in allStateActionPairs])
allStates = allStates.difference(set(deadlockStates))
allStates = allStates.difference(set(reachedStates))
self.allStates = np.array(list(allStates))
def _pickRandomTestCase(self):
testCase = np.random.choice(self.allStates, 1)[0]
#self.allStates = np.delete(self.allStates, testCase)
return testCase
def _simulate(self, initialStateId):
i = 0
actionId = self.strategy[initialStateId]
nextStatePair = (initialStateId, actionId)
while i < self.bound:
i += 1
nextStateProbabilities = self.allStateActionPairs[nextStatePair]
weights = list()
nextStateIds = list()
for nextStateId, probability in nextStateProbabilities.items():
weights.append(probability)
nextStateIds.append(nextStateId)
nextStateId = np.random.choice(nextStateIds, 1, p=weights)[0]
if nextStateId in self.deadlockStates:
return Verdict.FAIL, i
if nextStateId in self.reachedStates:
return Verdict.PASS, i
nextStatePair = (nextStateId, self.strategy[nextStateId])
return Verdict.INCONCLUSIVE, i
def runTest(self):
testCase = self._pickRandomTestCase()
histogram = [0,0,0]
for i in range(self.numSimulations):
result, numQueries = self._simulate(testCase)
if result == Verdict.FAIL:
return testCase, Verdict.FAIL, numQueries
return testCase, Verdict.INCONCLUSIVE, numQueries

376
test_model.py

@ -0,0 +1,376 @@
#!/usr/bin/python3
import re, sys, os, shutil, fileinput, subprocess, argparse
from dataclasses import dataclass, field
import visvis as vv
import numpy as np
import argparse
from translate import translateTransitions, readLabels
from plotting import VisVisPlotter
from simulation import Simulator, Verdict
def convert(tuples):
return dict(tuples)
def getBasename(filename):
return os.path.basename(filename)
def traFileWithIteration(filename, iteration):
return os.path.splitext(filename)[0] + f"_{iteration:03}.tra"
def copyFile(filename, newFilename):
shutil.copy(filename, newFilename)
def execute(command, verbose=False):
if verbose: print(f"Executing {command}")
os.system(command)
@dataclass(frozen=True)
class State:
id: int
x: float
x_vel: float
y: float
y_vel: float
z: float
z_vel: float
def default_value():
return {'action' : None, 'choiceValue' : None}
@dataclass(frozen=True)
class StateValue:
ranking: float
choices: dict = field(default_factory=default_value)
@dataclass(frozen=False)
class TestResult:
prob_pes_min: float
prob_pes_max: float
prob_pes_avg: float
prob_opt_min: float
prob_opt_max: float
prob_opt_avg: float
min_min: float
min_max: float
def csv(self, ws=" "):
return f"{self.prob_pes_min:0.04f}{ws}{self.prob_pes_max:0.04f}{ws}{self.prob_pes_avg:0.04f}{ws}{self.prob_opt_min:0.04f}{ws}{self.prob_opt_max:0.04f}{ws}{self.prob_opt_avg:0.04f}{ws}{self.min_min:0.04f}{ws}{self.min_max:0.04f}{ws}"
def parseStrategy(strategyFile, allStateActionPairs, time_index=0):
strategy = dict()
with open(strategyFile) as strategyLines:
for line in strategyLines:
line = line.replace("(","").replace(")","").replace("\n", "")
explode = re.split(",|=", line)
stateId = int(explode[0]) + 3
if stateId < 3: continue
if int(explode[1]) != time_index: continue
try:
strategy[stateId] = allStateActionPairs[stateId].index(explode[2])
except KeyError as e:
pass
return strategy
def queryStrategy(strategy, stateId):
try:
return strategy[stateId]
except:
return -1
def callTempest(files, reward, bound=3):
property_str = "!(\"failed\" | \"reached\")"
if True:
prop = f"filter(min, Pmax=? [ true U<={bound} \"failed\" ], {property_str} );"
prop += f"filter(max, Pmax=? [ true U<={bound} \"failed\" ], {property_str} );"
prop += f"filter(avg, Pmax=? [ true U<={bound} \"failed\" ], {property_str} );"
prop += f"filter(min, Pmin=? [ true U<={bound} \"failed\" ], {property_str} );"
prop += f"filter(max, Pmin=? [ true U<={bound} \"failed\" ], {property_str} );"
prop += f"filter(avg, Pmin=? [ true U<={bound} \"failed\" ], {property_str} );"
prop += f"filter(min, Rmin=? [ C<={bound} ], {property_str} );"
prop += f"filter(min, Rmax=? [ C<={bound} ], {property_str} );"
else:
prop = f"filter(min, Rmin=? [ C<={bound} ], {property_str} );"
prop += f"filter(max, Rmin=? [ C<={bound} ], {property_str} );"
prop += f"filter(avg, Rmin=? [ C<={bound} ], {property_str} );"
prop += f"filter(min, Rmax=? [ C<={bound} ], {property_str} );"
prop += f"filter(max, Rmax=? [ C<={bound} ], {property_str} );"
prop += f"filter(avg, Rmax=? [ C<={bound} ], {property_str} );"
command = f"~/projects/tempest-devel/ranking_release/bin/storm --io:explicit {files} --io:staterew MDP_Abstraction_interval.lab.{reward} --prop '{prop}' "
results = list()
try:
output = subprocess.check_output(command, shell=True).decode("utf-8").split('\n')
for line in output:
if "Result" in line and not len(results) >= 10:
range_value = re.search(r"(.*:).*\[(-?\d+\.?\d*), (-?\d+\.?\d*)\].*", line)
if range_value:
results.append(float(range_value.group(2)))
results.append(float(range_value.group(3)))
else:
value = re.search(r"(.*:)(.*)", line)
results.append(float(value.group(2)))
except subprocess.CalledProcessError as e:
print(e.output)
#results.append(-1)
#results.append(-1)
return TestResult(*(tuple(results)))
def parseRanking(filename, allStates):
state_ranking = dict()
try:
with open(filename, "r") as f:
filecontent = f.readlines()
for line in filecontent:
stateId = int(re.findall(r"^\d+", line)[0])
values = re.findall(r":(-?\d+\.?\d*),?", line)
ranking_value = float(values[0])
choices = {i : float(value) for i,value in enumerate(values[1:])}
state = allStates[stateId]
value = StateValue(ranking_value, choices)
state_ranking[state] = value
if len(state_ranking) == 0: return
all_values = [x.ranking for x in state_ranking.values()]
max_value = max(all_values)
min_value = min(all_values)
new_state_ranking = {}
for state, value in state_ranking.items():
choices = value.choices
try:
new_value = (value.ranking - min_value) / (max_value - min_value)
except ZeroDivisionError as e:
new_value = 0.0
new_state_ranking[state] = StateValue(new_value, choices)
state_ranking = new_state_ranking
except EnvironmentError:
print("TODO file not available. Exiting.")
sys.exit(1)
return {state: values for state, values in sorted(state_ranking.items(), key=lambda item: item[1].ranking)}
def parseStateValuations(filename):
all_states = dict()
maxStateId = -1
for i in [0,1,2]:
dummy_values = [i] * 7
all_states[i] = State(*dummy_values)
with open(filename) as stateValuations:
for line in stateValuations:
values = re.findall(r"(-?\d+\.?\d*),?", line)
values = [int(values[0])] + [float(v) for v in values[1:]]
all_states[values[0]] = State(*values)
if values[0] > maxStateId: maxStateId = values[0]
dummy_values = [maxStateId + 1] * 7
all_states[maxStateId + 1] = State(*dummy_values)
return all_states
def parseResults(allStates):
state_to_values = dict()
with open("prob_results_maximize") as maximizer, open("prob_results_minimize") as minimizer:
for max_line, min_line in zip(maximizer, minimizer):
max_values = re.findall(r"(-?\d+\.?\d*),?", max_line)
min_values = re.findall(r"(-?\d+\.?\d*),?", min_line)
if max_values[0] != min_values[0]:
print("min/max files do not match.")
assert(False)
stateId = int(max_values[0])
min_result = float(min_values[1])
max_result = float(max_values[1])
value = (min_result, max_result, max_result - min_result)
state_to_values[stateId] = value
return state_to_values
def removeActionFromTransitionFile(stateId, chosenActionIndex, filename, iteration):
stateIdRegex = re.compile(f"^{stateId}\s")
for line in fileinput.input(filename, inplace = True):
if not stateIdRegex.match(line):
print(line, end="")
else:
explode = line.split(" ")
if int(explode[1]) == chosenActionIndex:
print(line, end="")
def removeActionsFromTransitionFile(stateActionPairsToTrim, filename, iteration):
stateIdsRegex = re.compile("|".join([f"^{stateId}\s" for stateId, actionIndex in stateActionPairsToTrim.items()]))
for line in fileinput.input(filename, inplace = True):
result = stateIdsRegex.match(line)
if not result:
print(line, end="")
else:
actionIndex = stateActionPairsToTrim[int(result[0])]
explode = line.split(" ")
if int(explode[1]) == actionIndex:
print(line, end="")
def getTopNStates(rankedStates, n, threshold):
if n != 0:
return dict(list(rankedStates.items())[-n:])
else:
return {state:value for state,value in rankedStates.items() if value.ranking >= threshold}
def getNRandomStates(rankedStates, n, testedStates):
stateIds = [state.id for state in rankedStates.keys()]
notYetTestedStates = np.array([stateId for stateId in stateIds if stateId not in testedStates])
if len(notYetTestedStates) >= n:
return notYetTestedStates[np.random.choice(len(notYetTestedStates), size=n, replace=False)]
else:
return notYetTestedStates
def main(traFile, labFile, straFile, horizonBound, refinementSteps, refinementBound, ablationTesting, plotting=False, stepwisePlotting=False):
all_states = parseStateValuations("MDP_state_valuations")
deadlockStates, reachedStates, maxStateId = readLabels(labFile)
stateToActions, allStateActionPairs = translateTransitions(traFile, deadlockStates, reachedStates, maxStateId)
strategy = parseStrategy(straFile, stateToActions)
if plotting: plotter = VisVisPlotter(all_states, reachedStates, deadlockStates, stepwisePlotting)
if plotting: plotter.plotScenario()
copyFile("MDP_" + traFile, "MDP_" + os.path.splitext(getBasename(traFile))[0] + f"_000.tra")
iteration = 0
#testsPerIteration = refinementSteps
#refinementThreshold =
numTestedStates = 0
totalIterations = 60
testedStates = list()
while iteration < totalIterations:
print(f"{iteration:03}", end="\t")
sys.stdout.flush()
currentTraFile = traFileWithIteration("MDP_" + traFile, iteration)
nextTraFile = traFileWithIteration("MDP_" + traFile, iteration+1)
testResult = callTempest(f"{currentTraFile} MDP_{labFile}", "saferew", horizonBound)
state_ranking = parseRanking("action_ranking", all_states)
copyFile("action_ranking", f"action_ranking_{iteration:03}")
copyFile("prob_results_maximize", f"prob_results_maximize_{iteration:03}")
copyFile("prob_results_minimize", f"prob_results_minimize_{iteration:03}")
if not ablationTesting:
importantStates = getTopNStates(state_ranking, refinementSteps, refinementBound)
statesToTest = [state.id for state in importantStates.keys()]
statesToPlot = importantStates
else:
statesToTest = list(getNRandomStates(state_ranking, refinementSteps, testedStates))
testedStates += statesToTest
statesToPlot = {all_states[stateId]:StateValue(0,{}) for stateId in statesToTest}
copyFile(currentTraFile, nextTraFile)
stateActionPairsToTrim = dict()
for testState in statesToTest:
chosenActionIndex = queryStrategy(strategy, testState)
if chosenActionIndex != -1:
stateActionPairsToTrim[testState] = chosenActionIndex
stateEstimates = parseResults(all_states)
results = [0,0,0]
failureStates = list()
validatedStates = list()
for state, estimates in stateEstimates.items():
if state in deadlockStates or state in reachedStates:
continue
if estimates[0] > 0.05:
results[1] += 1
failureStates.append(all_states[state])
#print(f"{state}: {estimates}")
elif estimates[1] <= 0.05:
results[0] += 1
validatedStates.append(all_states[state])
else:
results[2] += 1
removeActionsFromTransitionFile(stateActionPairsToTrim, nextTraFile, iteration)
print(f"{numTestedStates}\t{testResult.csv(' ')}\t{results[0]}\t{results[1]}\t{results[2]}\t{sum(results)}")
if results[2] == 0:
sys.exit(0)
numTestedStates += len(statesToTest)
iteration += 1
if plotting: plotter.plotStates(failureStates, coloring=(0.8,0.0,0.0,0.6), removeMeshes=True)
if plotting: plotter.plotStates(validatedStates, coloring=(0.0,0.8,0.0,0.6))
if plotting: plotter.takeScreenshot(iteration, prefix="stepwise_0.05")
def randomTesting(traFile, labFile, straFile, bound, maxQueries, plotting=False):
all_states = parseStateValuations("MDP_state_valuations")
deadlockStates, reachedStates, maxStateId = readLabels(labFile)
stateToActions, allStateActionPairs = translateTransitions(traFile, deadlockStates, reachedStates, maxStateId)
strategy = parseStrategy(straFile, stateToActions)
if plotting: plotter = VisVisPlotter(all_states, reachedStates, deadlockStates, stepwisePlotting)
if plotting: plotter.plotScenario()
passingStates = list()
randomTestingSimulator = Simulator(allStateActionPairs, strategy, deadlockStates, reachedStates, bound)
i = 0
print("Starting with random testing.")
numQueries = 0
failureStates = list()
while numQueries <= maxQueries:
if i >= 500:
if plotting: plotter.plotStates(failureStates, coloring=(0.8,0.0,0.0,0.6))
if plotting: plotter.takeScreenshot(iteration, prefix="random_testing")
if plotting: plotter.turnCamera()
if plotting: input("")
print(f"{numQueries} {len(failureStates)} ")
i = 0
testCase, testResult, queriesForThisTestCase = randomTestingSimulator.runTest()
i += queriesForThisTestCase
numQueries += queriesForThisTestCase
stateValuation = all_states[testCase]
if testResult == Verdict.FAIL:
failureStates.append(stateValuation)
print(f"{numQueries} {len(failureStates)} ")
def parseArgs():
parser = argparse.ArgumentParser()
parser.add_argument('--tra', type=str, required=True, help='Path to .tra file.')
parser.add_argument('--lab', type=str, required=True, help='Path to .lab file.')
parser.add_argument('--rew', type=str, required=True, help='Path to .rew file.')
parser.add_argument('--stra', type=str, required=True, help='Path to strategy file.')
refinement = parser.add_mutually_exclusive_group(required=True)
refinement.add_argument('--refinement-steps', type=int, default=0, help='Amount of refinement steps per iteration, mutually exclusive with refinement-bound.')
refinement.add_argument('--refinement-bound', type=float, default=0, help='Threshold value for states to be tested, mutually exclusive with refinement-steps.')
parser.add_argument('--bound', type=int, required=False, default=3, help='(optional) Safety Horizon Bound, defaults to 3.')
parser.add_argument('--threshold', type=float, required=False, default=0.05, help='(optional) Safety Threshold, defaults to 0.05.')
random_testing = parser.add_mutually_exclusive_group()
random_testing.add_argument('-a', '--ablation', action='store_true', help="(optional) Run ablation testing for the importance ranking, i.e. model-based random testing.")
random_testing.add_argument('-r', '--random', type=int, default=0, help='(optional) The amount of queries allowed for random testing.')
parser.add_argument('-p', '--plotting', action='store_true', help='(optional) Enable plotting.')
parser.add_argument('--stepwise', action='store_true', help='(optional) Remove states before plotting the next iteration.')
return parser.parse_args()
if __name__ == '__main__':
args = parseArgs()
traFile = args.tra
labFile = args.lab
straFile = args.stra
rewFile = args.rew
ablationTesting = args.ablation
plotting = args.plotting
stepwisePlotting = args.stepwise
maxQueriesForRandomTesting = args.random
horizonBound = args.bound
refinementSteps = args.refinement_steps
refinementBound = args.refinement_bound
if maxQueriesForRandomTesting == 0: #akward way to test for this...
main(traFile, labFile, straFile, horizonBound, refinementSteps, refinementBound, ablationTesting, plotting, stepwisePlotting)
else:
randomTesting(traFile, labFile, straFile, horizonBound, maxQueriesForRandomTesting, plotting)

135
translate.py

@ -0,0 +1,135 @@
#!/usr/bin/python3
import sys
#import re
import json
import numpy as np
from collections import deque
from dataclasses import dataclass
@dataclass(frozen=False)
class StateAction:
state_id: int
action_id: int
next_state_probabilities: dict
action_name: str
def normalizeDistribution(self):
weight = np.sum([value for key, value in self.next_state_probabilities.items()])
self.next_state_probabilities = { next_state_id : (probability / weight) for next_state_id, probability in self.next_state_probabilities.items() }
def translateTransitions(traFile, deadlockStates, reachedStates, maxStateId):
current_state_id = -1
current_action_id = -1
all_state_action_pairs = list()
with open(traFile) as transitions:
next(transitions)
for line in transitions:
line = line.replace("\n","")
explode = line.split(" ")
if len(explode) < 2: continue
interval = json.loads(explode[3])
probability = (interval[0] + interval[1])/2
state_id = int(explode[0])
action_id = int(explode[1])
next_state_id = int(explode[2])
if len(explode) >= 5:
action_name = explode[4]
else:
action_name = ""
#print(f"State : {state_id} with action {action_id} leads with {probability} to {next_state_id}.")
if state_id in [0, 1, 2]:
continue
next_state_probabilities = {next_state_id: probability}
if current_state_id != state_id:
new_state_action_pair = StateAction(state_id, action_id, next_state_probabilities, action_name)
all_state_action_pairs.append(new_state_action_pair)
current_state_id = state_id
current_action_id = action_id
elif current_action_id != action_id:
new_state_action_pair = StateAction(state_id, action_id, next_state_probabilities, action_name)
all_state_action_pairs.append(new_state_action_pair)
current_action_id = action_id
else:
all_state_action_pairs[-1].next_state_probabilities[next_state_id] = probability
# we need to sort the deadlock and reached states to insert them while building the .tra file
deadlockStates = [(state, 0) for state in deadlockStates]
reachedStates = [(state, maxStateId) for state in reachedStates]
final_states = deadlockStates + reachedStates
final_states = deque(sorted(final_states, key=lambda tuple: tuple[0], reverse=True))
with open("MDP_" + traFile, "w") as new_transitions_file:
new_transitions_file.write("mdp\n")
new_transitions_file.write(f"0 0 {maxStateId} 1.0\n")
for entry in all_state_action_pairs:
entry.normalizeDistribution()
source_state = int(entry.state_id)
while final_states and int(final_states[-1][0]) < source_state:
final_state = final_states.pop()
if int(final_state[0]) == 0: continue
new_transitions_file.write(f"{final_state[0]} 0 {final_state[1]} 1.0\n")
for next_state_id, probability in entry.next_state_probabilities.items():
new_transitions_file.write(f"{entry.state_id} {entry.action_id} {next_state_id} {probability}\n")
new_transitions_file.write(f"{maxStateId} 0 {maxStateId} 1.0\n")
state_to_actions = dict()
for state_action_pair in all_state_action_pairs:
if state_action_pair.state_id in state_to_actions:
state_to_actions[state_action_pair.state_id].append(state_action_pair.action_name)
else:
state_to_actions[state_action_pair.state_id] = [state_action_pair.action_name]
return state_to_actions, all_state_action_pairs
def readLabels(labFile):
deadlockStates = list()
reachedStates = list()
with open(labFile) as states:
newLabFile = "MDP_" + labFile
newLabels = open(newLabFile, "w")
optRewards = open(newLabFile + ".optrew", "w")
safetyRewards = open(newLabFile + ".saferew", "w")
labels = ["init", "deadlock", "reached", "failed"]
next(states)
newLabels.write("#DECLARATION\ninit deadlock reached failed\n#END\n")
maxStateId = -1
for line in states:
line = line.replace(":","").replace("\n", "")
explode = line.split(" ")
newLabel = f"{explode[0]} "
if int(explode[0]) > maxStateId: maxStateId = int(explode[0])
if int(explode[0]) == 0:
safetyRewards.write(f"{explode[0]} -100\n")
optRewards.write(f"{explode[0]} -100\n")
#if "3" in explode:
# safetyRewards.write(f"{explode[0]} -100\n")
# optRewards.write(f"{explode[0]} -100\n")
elif "2" in explode:
optRewards.write(f"{explode[0]} 100\n")
else:
optRewards.write(f"{explode[0]} -1\n")
for labelIndex in explode[1:]:
# sink states should not be deadlock states anymore:
if labelIndex == "1":
deadlockStates.append(int(explode[0]))
continue
if labelIndex == "2":
reachedStates.append(int(explode[0]))
continue
newLabel += f"{labels[int(labelIndex)]} "
newLabels.write(newLabel + "\n")
return deadlockStates, reachedStates, maxStateId + 1
def main(traFile, labFile):
deadlockStates, reachedStates, maxStateId = readLabels(labFile)
translateTransitions(traFile, deadlockStates, reachedStates, maxStateId)
if __name__ == '__main__':
traFile = sys.argv[1]
labFile = sys.argv[2]
main(traFile, labFile)
Loading…
Cancel
Save