
Questionnaire “Logic and Computability”
Summer Term 2024

Contents
6 SMT Solvers and Z3 1

6.1 Z3 Programming Examples . 1

6 SMT Solvers and Z3
6.1 Z3 Programming Examples

6.1.1 Let a and b be Boolean variables. Complete the python code with the appropriate variable
declarations and constraint statements to check whether the following equivalence holds:

¬(a ∧ b) = (¬a ∨ ¬b).

1 from z3 import *
2

3 solver = Solver()
4

5

6

7

8

9

10 result = solver.check()
11 print(result)

6.1.2 Complete the following snippet of the python script with the necessary constraint state-
ments.
The script reads a file that represents a size_x × size_y grid, which includes walkable cells
denoted by ’_’.
Write constraints for the variables coords_x and coords_y such that the variables can only
take values that are within the boundaries of the grid and can only represent walkable cells.

1 from z3 import *
2

3 ...
4

5 # size_x and size_y denote the size of the grid
6 size_y = len(grid)
7 size_x = len(grid[0])
8

9 coords_x = Int("coords_x")
10 coords_y = Int("coords_y")
11

12 # Enforce that the position is in the grid, use size_x and size_y
13

14

15

16

17

18 # Enforce that the coordinates can only be a valid cell
19 for i in range(size_y):
20 for j in range(size_x):
21 if grid[i][j] != "_":
22 #
23 #

6.1 Z3 Programming Examples 6 SMT SOLVERS AND Z3

24 #
25

26

27

28

6.1.3 Given a 2-bit bitvector x, we want to check whether it is possible that x+ 1 < x− 1.
The following python script returns sat. Explain the error in the script and expand it such that
it correctly prints unsat.

1

2 from z3 import *
3

4 solver = Solver()
5

6 bvX = BitVec("bvX", 2)
7

8 solver.add(bvX + 1 < bvX - 1)
9

10

11

12

13 result = solver.check()
14 print(result)
15 if result == sat:
16 print(solver.model())
17

Page 2 of 6

6.1 Z3 Programming Examples 6 SMT SOLVERS AND Z3

6.1.4 Let a and b be Boolean variables. Complete the python code with the appropriate variable
declarations and constraint statements to check whether the following equivalence holds:

¬(a ∨ b) ≡ (¬a ∧ ¬b).

1 from z3 import *
2

3 solver = Solver()
4

5

6

7

8

9

10 result = solver.check()
11 print(result)

6.1.5 Let p and q be Boolean variables. Complete the python code with the appropriate variable
declarations and constraint statements to check whether the following equivalence holds:

(p → q) ≡ (¬p ∨ q).

1 from z3 import *
2

3 solver = Solver()
4

5

6

7

8

9

10 result = solver.check()
11 print(result)

6.1.6 Let p, q and r be Boolean variables. Complete the python code with the appropriate
variable declarations and constraint statements to check whether the following equivalence holds:

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

1 from z3 import *
2

3 solver = Solver()
4

5

6

7

8

9

10

Page 3 of 6

6.1 Z3 Programming Examples 6 SMT SOLVERS AND Z3

11

12 result = solver.check()
13 print(result)

6.1.7 Let x and y be two 32-bit vector variables. Complete the python code with the appropriate
variable declarations and constraint statements to check whether the following equivalence holds:

x⊕ y ≡ (((y ∧ x) ∗ −2) + (y + x))

1 from z3 import *
2

3 s = Solver()
4

5

6

7

8

9

10

11

12

13

14 print(s.check())
15

6.1.8 Let x and y be two 32-bit vector variables. Complete the script such that it checks whether
abs(x) can be computed in the following way:

y = x >> 31 (1)

abs(x) = (x⊕ y)− y (2)

The script should compare the result with the built-in function Abs(x) from z3.

1 from z3 import *
2

3 solver = Solver()
4

5

6

7

8

9

10

11

12

13

14

15

16

17

Page 4 of 6

6.1 Z3 Programming Examples 6 SMT SOLVERS AND Z3

18

19 result = solver.check()
20 print(result)
21

22

6.1.9 Consider the following script. What are the outputs of the two calls to solver.check()?
Explain your answers. In particular, elaborate the difference of using an Int() and a BitVec()
for the variables.

1 from z3 import *
2

3 solver = Solver()
4

5 intX = Int("intX")
6 bvX = BitVec("bvX", 2)
7

8 solver.push()
9 solver.add(bvX + 1 < bvX - 1)

10 result = solver.check()
11 print(result)
12 if result == sat:
13 print(solver.model())
14 solver.pop()
15

16 solver.push()
17 solver.add(intX + 1 < intX - 1)
18 result = solver.check()
19 print(result)
20 if result == sat:
21 print(solver.model())

6.1.10 Given a 4-bit bitvector x, we want to check whether it is possible that x · 2 > x · 4.
The following python script returns sat. Explain the error in the script and expand it such that
it correctly prints unsat.

1 from z3 import *
2

3 solver = Solver()
4

5 bvX = BitVec("bvX", 4)

Page 5 of 6

6.1 Z3 Programming Examples 6 SMT SOLVERS AND Z3

6

7 solver.add(UGT(bvX * 2,bvX * 4))
8

9

10

11

12 result = solver.check()
13 print(result)
14 if result == sat:
15 print(solver.model())
16 print(solver.model().evaluate(bvX * 2))
17 print(solver.model().evaluate(bvX * 4))

Page 6 of 6

	SMT Solvers and Z3
	Z3 Programming Examples

