You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

15 lines
927 B

Using the variables $v_1$ and $v_0$, we can define the transition relation using the following formula:\\
\begin{center}
$\lnot v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$\lnot v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0)$
\end{center}
We can further simplify the formula to:
\begin{center}
$\lnot v_1 \land \lnot v_0 \lor$\\
$\lnot v_1 \land v_0 \land (v'_0 \lor v'_1 \land \lnot v'_0) \ \lor$\\
$v_1 \land \lnot v_0 \land (\lnot v'_1 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land v_0$
\end{center}