You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
36 lines
2.0 KiB
36 lines
2.0 KiB
We start by translating $\varphi$ to $\hat{\varphi} = \skel$ and assign the following variables to the theory literals:
|
|
\begin{itemize}
|
|
\item $e_{0}\Leftrightarrow(a=x)$
|
|
\item $e_{1}\Leftrightarrow(a=y)$
|
|
\item $e_{2}\Leftrightarrow(x=y)$
|
|
\item $e_{3}\Leftrightarrow(z=a)$
|
|
\item $e_{4}\Leftrightarrow(b=z)$
|
|
\end{itemize}
|
|
|
|
$\hat{\varphi} = (\clause{e_{0}; e_{1}; e_{2}})\land (\clause{\lnot e_{0}; e_{1}})\land (\clause{\lnot e_{1}; e_{2}})\land (\clause{e_{2}; e_{3}})\land (\clause{\lnot e_{2}; e_{4}})\land (\clause{\lnot e_{3}; \lnot e_{4}})$
|
|
|
|
\hspace{-0.09cm}\scalebox{0.85}{
|
|
\begin{dplltabular}{6}
|
|
\dpllStep{1|2|3|4|5|6}
|
|
\dpllDecL{0|1|2|2|2|2}
|
|
\dpllAssi{ - |$\lnot e_{0}$|$\lnot e_{0}, \lnot e_{1}$|$\lnot e_{0}, \lnot e_{1}, e_{2}$|\makecell{$\lnot e_{0}, \lnot e_{1}, e_{2}, $ \\ $e_{4}$}|\makecell{$\lnot e_{0}, \lnot e_{1}, e_{2}, $ \\ $e_{4}, \lnot e_{3}$}}
|
|
\dpllClause{1}{$e_{0}, e_{1}, e_{2}$}{$e_{0}, e_{1}, e_{2}$|$e_{1}, e_{2}$|$e_{2}$|\done|\done|\done}
|
|
\dpllClause{2}{$\lnot e_{0}, e_{1}$}{$\lnot e_{0}, e_{1}$|\done|\done|\done|\done|\done}
|
|
\dpllClause{3}{$\lnot e_{1}, e_{2}$}{$\lnot e_{1}, e_{2}$|$\lnot e_{1}, e_{2}$|\done|\done|\done|\done}
|
|
\dpllClause{4}{$e_{2}, e_{3}$}{$e_{2}, e_{3}$|$e_{2}, e_{3}$|$e_{2}, e_{3}$|\done|\done|\done}
|
|
\dpllClause{5}{$\lnot e_{2}, e_{4}$}{$\lnot e_{2}, e_{4}$|$\lnot e_{2}, e_{4}$|$\lnot e_{2}, e_{4}$|$e_{4}$|\done|\done}
|
|
\dpllClause{6}{$\lnot e_{3}, \lnot e_{4}$}{$\lnot e_{3}, \lnot e_{4}$|$\lnot e_{3}, \lnot e_{4}$|$\lnot e_{3}, \lnot e_{4}$|$\lnot e_{3}, \lnot e_{4}$|$\lnot e_{3}$|\done}
|
|
\dpllBCP{ - | - |$e_{2}$|$e_{4}$|$\lnot e_{3}$| - }
|
|
\dpllPL{ - | - | - | - | - | - }
|
|
\dpllDeci{$\lnot e_{0}$|$\lnot e_{1}$| - | - | - |SAT}
|
|
\end{dplltabular}
|
|
}
|
|
|
|
$\Model_{\EUF} := (a \neq x) \land (a \neq y) \land (x = y) \land (z \neq a) \land (b = z) $ \\
|
|
Check if the assignment is consistent with the theory:
|
|
|
|
\begin{align*}
|
|
&\{x, y\}, \{b, z\}, \{a\}
|
|
\end{align*}
|
|
|
|
$\Model_{\EUF}$ is consistent with the theory, \\$\Rightarrow \Model_{\EUF}$ is a satisfying assignment and $\varphi$ is SAT.
|