You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

42 lines
1.3 KiB

\item \self Consider the propositional formulas $\varphi = (p \lor q)
\rightarrow r$, and $\psi = r \lor (\neg p \land \neg q)$.
\begin{enumerate}
\item Fill out the truth table for $\varphi$ and $\psi$ (and
their subformulas).
\begin{tabular}{|c|c|c||c|c|c|c||c|c|}
\hline
$p$&$q$&$r$&$\neg p$&$\neg q$&$p \lor q$&$\neg p \land \neg q$&$\varphi$&$\psi$\\
\hline
\hline
\textbf{F} &\textbf{F} &\textbf{F} & \T& \T& \F& \T& \T& \T\\
\hline
\textbf{F} &\textbf{F} &\textbf{T} & \T& \T& \F& \T& \T& \T\\
\hline
\textbf{F} &\textbf{T} &\textbf{F} & \T& \F& \T& \F& \F& \F\\
\hline
\textbf{F} &\textbf{T} &\textbf{T} & \T& \F& \T& \F& \T& \T\\
\hline
\textbf{T} &\textbf{F} &\textbf{F} & \F& \T& \T& \F& \F& \F\\
\hline
\textbf{T} &\textbf{F} &\textbf{T} & \F& \T& \T& \F& \T& \T\\
\hline
\textbf{T} &\textbf{T} &\textbf{F} & \F& \F& \T& \F& \F& \F\\
\hline
\textbf{T} &\textbf{T} &\textbf{T} & \F& \F& \T& \F& \T& \T\\
\hline
\end{tabular}
\item Which of the formulas is satisfiable? \\
\quad Both are satisfiable.
\item Which of the formulas is valid? \\
\quad Neither are valid.
\item Is $\varphi$ equivalent to $\psi$? \\
\quad They are semantically equivalent.
\item Does $\varphi$ semantically entail $\psi$? \\
\quad Yes.
\item Does $\psi$ semantically entail $\varphi$? \\
\quad Yes.
\end{enumerate}