You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
44 lines
1.3 KiB
44 lines
1.3 KiB
\item \lect Consider the propositional formulas $\varphi = (p \rightarrow
|
|
q) \vee \neg r$ and $\psi = (\neg r \wedge p) \vee (\neg q \rightarrow \neg r)$.
|
|
|
|
\begin{enumerate}
|
|
\item Fill out the truth table for $\varphi$ and $\psi$ and
|
|
their subformulas.
|
|
|
|
\begin{tabular}{|c|c|c||c|c|c|c|c||c|c|}
|
|
\hline
|
|
$p$&$q$&$r$&$\neg q$&$\neg r$&$p \rightarrow q$&$\neg r \wedge p$&$\neg q \rightarrow \neg r$&$\varphi$&$\psi$\\
|
|
\hline
|
|
\hline
|
|
\textbf{F} &\textbf{F} &\textbf{F} & T & T & T & F & T & T & T \\
|
|
\hline
|
|
\textbf{F} &\textbf{F} &\textbf{T} & T & F & T & F & F & T & F \\
|
|
\hline
|
|
\textbf{F} &\textbf{T} &\textbf{F} & F & T & T & F & T & T & T \\
|
|
\hline
|
|
\textbf{F} &\textbf{T} &\textbf{T} & F & F & T & F & T & T & T \\
|
|
\hline
|
|
\textbf{T} &\textbf{F} &\textbf{F} & T & T & F & T & T & T & T \\
|
|
\hline
|
|
\textbf{T} &\textbf{F} &\textbf{T} & T & F & F & F & F & F & F \\
|
|
\hline
|
|
\textbf{T} &\textbf{T} &\textbf{F} & F & T & T & T & T & T & T \\
|
|
\hline
|
|
\textbf{T} &\textbf{T} &\textbf{T} & F & F & T & F & T & T & T \\
|
|
\hline
|
|
\end{tabular}
|
|
\vspace{0.5cm}
|
|
|
|
\item Which of the formulas is satisfiable?
|
|
|
|
Both of them are satisfiable.
|
|
|
|
\item Which of the formulas is valid?
|
|
|
|
None of them are valid.
|
|
|
|
\item Which of the two formulas $\varphi$ and $\psi$ entails the other?
|
|
|
|
It holds that $\psi \models \varphi$.
|
|
|
|
\end{enumerate}
|