You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

14 lines
759 B

\item Consider the following natural deduction proof for the sequent $$\exists x \; \lnot P(x) \quad \ent \quad \lnot \forall x \; P(x).$$
Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.
\setlength\subproofhorizspace{1em}
\begin{logicproof}{1}
\exists x \; \lnot P(x) & prem.\\
\begin{subproof}
\forall x \; P(x) & ass.\\
P(x_0) & $\forall \mathrm{e}$ 2\\
\exists x \; P(x) & $\exists \mathrm{i}$ 3\\
\bot & $\lnot \mathrm{e}$ 1,4
\end{subproof}
\lnot \forall x \; P(x) & $\lnot \mathrm{e}$ 2-5
\end{logicproof}