You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

38 lines
1.9 KiB

\item \self Compute the propositional formula of the following circuit and transform it into an equisatisfiable formula in CNF by applying Tseitin's encoding.
For each variable you introduce, clearly indicate which subformula of $\phi$ it represents.
\tikzstyle{branch}=[fill,shape=circle,minimum size=3pt,inner sep=0pt]
\begin{tikzpicture}[label distance=2mm]
\node (a) at (0,0) {$a$};
\node (b) at (0,-1) {$b$};
\node (c) at (0,-2) {$c$};
\node (z) at (10,-1) {$z$};
\node (am) at (1,0) {};
\node (cm) at (1,-2) {};
\node (bm) at (3,-1) {};
\node (not1m) at (3,-2) {};
\node (not2m) at (5,-.5) {};
\node (or1m) at (5,-1.5) {};
\node (bc_c1) at (1,-1.1) {};
\node (bc_c2) at (1.1,-1) {};
\node (bc_c3) at (1,-.9) {};
\node[and gate US, draw, logic gate inputs=nn] at ($(2,-.5)$) (and1) {\tiny AND};
\node[not gate US, draw, logic gate inputs=n] at ($(2,-2)$) (not1) {\tiny NOT};
\node[not gate US, draw, logic gate inputs=n] at ($(4,-.5)$) (not2) {\tiny NOT};
\node[or gate US, draw, logic gate inputs=nn] at ($(4,-1.5)$) (or1) {\tiny OR};
\node[and gate US, draw, logic gate inputs=nn] at ($(6,-1)$) (and2) {\tiny AND};
\node[not gate US, draw, logic gate inputs=n] at ($(8,-1)$) (not3) {\tiny NOT};
\draw (a.east) -| (am.center) |- (and1.input 1);
\draw (c.east) -| (cm.center) node[circle, fill,inner sep=2pt] {} -- (bc_c1.center) -- (bc_c2.center) -- (bc_c3.center) |- (and1.input 2);
\draw (b.east) -| (bm.center)|- (or1.input 1);
\draw (c.east) -- (not1.input);
\draw (and1.output) -- node[above] {$u$} (not2.input);
\draw (not1.output) -| (not1m.center) node[below] {$v$} |- (or1.input 2);
\draw (not2.output) -| (not2m.center) node[above] {$w$} |- (and2.input 1);
\draw (or1.output) -| (or1m.center) node[below] {$x$} |- (and2.input 2);
\draw (and2.output) -- node[below] {$y$} (not3.input);
\draw (not3.output) -- (z.west);
\end{tikzpicture}