You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

24 lines
1.2 KiB

\item \self Consider the following natural deduction proof for the sequent $$\quad \exists x \; P(x) \lor \exists x \; Q(x) \quad \ent \quad \exists x \; (P(x)\lor Q(x)).$$
Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.
\setlength\subproofhorizspace{1.7em}
\begin{logicproof}{2}
\exists x \; P(x) \lor \exists x \; Q(x) & prem.\\
\begin{subproof}
\exists x \; P(x) & ass.\\
\begin{subproof}
\llap{$x_0\enspace \;$} P(x_0) & ass.\\
P(x_0) \lor Q(x_0) & $\lor \mathrm{i}_1$ 3
\end{subproof}
\exists x \; (P(x) \lor Q(x)) & $\exists \mathrm{e}$ 2,3-4
\end{subproof}
\begin{subproof}
\exists x \; Q(x) & ass.\\
\begin{subproof}
\llap{$x_0\enspace \;$} Q(x_0) & ass.\\
P(x_0) \lor Q(x_0) & $\lor \mathrm{i}_2$ 7
\end{subproof}
\exists x \; (P(x)\lor Q(x)) & $\exists \mathrm{e}$ 6,7-8
\end{subproof}
\exists x \; (P(x)\lor Q(x)) & $\lor \mathrm{e}$ 1,2-5,6-9
\end{logicproof}