You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

202 lines
6.8 KiB

\hspace{-0.09cm}\scalebox{0.87}{
\begin{dplltabular}{7}
\dpllStep{1|2|3|4|5|6|7}
\dpllDecL{0|1|2|2|2|2|1}
\dpllAssi{-|
$\lnot a$|
$\lnot a, \lnot b$|
$\lnot a, \lnot b, c$|
$\lnot a, \lnot b, c, \lnot e$|
$\lnot a, \lnot b, c, \lnot e, \lnot d$|
$\lnot a$}
\dpllClause{1}{$\lnot a,\lnot c$}
{$\lnot a,\lnot c$|\done|\done|\done|\done|\done|\done}
\dpllClause{2}{$b,c$}
{$b,c$|$b,c$|$c$|\done|\done|\done|$b,c$}
\dpllClause{3}{$\lnot b, \lnot d$}
{$\lnot b,\lnot d$|$\lnot b,\lnot d$|\done|\done|\done|\done|$\lnot b,\lnot d$}
\dpllClause{4}{$\lnot d, e$}
{$\lnot d,e$|$\lnot d,e$|$\lnot d,e$|$\lnot d,e$|$\lnot d$|\done|$\lnot d,e$}
\dpllClause{5}{$d, e$}
{$d.e$|$d.e$|$d.e$|$d.e$|$d$|\conflict|$d,e$}
\dpllClause{6}{$a, \lnot c, \lnot e$}
{$a, \lnot c, \lnot e$|$\lnot c,\lnot e$|$\lnot c, \lnot e$|$\lnot e$|\done|\done|$\lnot c, \lnot e$}
\dpllClause{7}{$\lnot b, c, d$}
{$\lnot b,c,d$|$\lnot b,c,d$|\done|\done|\done|\done|$\lnot b,c,d$}
\dpllClause{8}{\textcolor{gray}{$a.b$}}
{-|-|-|-|-|$a,b$|$b$}
\dpllClause{9}{\textcolor{gray}{$a$}}
{-|-|-|-|-|-|-}
\dpllBCP{-|-|$c$|$\lnot e$|\lnot d|-|$b$}
\dpllPL{-|-|-|-|-|-|-}
\dpllDeci{$\lnot a$|$\lnot b$|-|-|-|-|-}
\end{dplltabular}
}
First Conflict in Step 6: \\
\begin{conflictgraph}
\node[base node] (notA) {$\lnot a$};
\node[base node] (notB) [below of=notA] {$\lnot b$};
\node[base node] (C) [right of=notB] {$c$};
\node[base node] (notE) [above right of=C] {$\lnot e$};
\node[base node] (D) [above right of=notE] {$d$};
\node[base node] (notD) [below right of=notE] {$\lnot d$};
\node[base node] (bot) [below right of=D] {$\bot$};
\path[]
(notA) edge [] node {$6$} (notE)
(notB) edge [] node {$2$} (C)
(C) edge [] node {$6$} (notE)
(notE) edge [] node {$4$} (D)
(notE) edge [] node {$5$} (notD)
(notD) edge [] node {} (bot)
(D) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$4. \; \lnot d \lor e$}
\AxiomC{$5. \; d \lor e$}
\BinaryInfC{$e$}
\AxiomC{$6. \; a \lor \lnot c \lor \lnot e$}
\BinaryInfC{$a \lor \lnot c$}
\AxiomC{$2. \; b \lor c$}
\BinaryInfC{$ a \lor b$}
\end{prooftree}
\vspace{1cm}
\scalebox{0.87}{
\begin{dplltabular}{8}
\dpllStep{8|9|10|11|12|13|14}
\dpllDecL{1|1|1|1|0|0|0}
\dpllAssi{ $\lnot a, b$|
$\lnot a, b, \lnot d$|
$\lnot a, b, \lnot d, c$|
$\lnot a, b, \lnot d, c, \lnot e$|
-|
$a$|
$a, \lnot c$}
\dpllClause{1}{$\lnot a,\lnot c$}
{\done|\done|\done|\done|$\lnot a,\lnot c$|$\lnot c$|\done}
\dpllClause{2}{$b,c$}
{\done|\done|\done|\done|$b,c$|$b,c$|$b$}
\dpllClause{3}{$\lnot b, \lnot d$}
{$\lnot d$|\done|\done|\done|$\lnot b,\lnot d$|$\lnot b,\lnot d$|$\lnot b,\lnot d$}
\dpllClause{4}{$\lnot d, e$}
{$\lnot d,e$|\done|\done|\done|$\lnot d,e$|$\lnot d,e$|$\lnot d,e$}
\dpllClause{5}{$d, e$}
{$d,e$|$e$|$e$|\conflict|$d,e$|$d,e$|$d,e$}
\dpllClause{6}{$a, \lnot c, \lnot e$}
{$\lnot c,\lnot e$|$\lnot c,\lnot e$|$\lnot e$|\done|$a, \lnot c, \lnot e$|\done|\done}
\dpllClause{7}{$\lnot b, c, d$}
{$d,c$|$c$|\done|\done|$\lnot b, c, d$|$\lnot b, c, d$|$\lnot b, d$}
\dpllClause{8}{\textcolor{gray}{$a.b$}}
{\done|\done|\done|\done|$a,b$|\done|\done}
\dpllClause{9}{\textcolor{gray}{$a$}}
{-|-|-|$a$|$a$|\done|\done}
\dpllBCP{$\lnot d$|$c$|$\lnot e$|-|$a$|$\lnot c$|$b$}
\dpllPL{-|-|-|-|-|-|-}
\dpllDeci{-|-|-|-|-|-|-}
\end{dplltabular}
}
Second Conflict in Step 11: \\
\begin{conflictgraph}
\node[base node] (notA) {$\lnot a$};
\node[base node] (B) [right of=notA] {$b$};
\node[base node] (notD) [right of=B] {$\lnot d$};
\node[base node] (E) [right of=notD] {$e$};
\node[base node] (C) [below of=E] {$c$};
\node[base node] (notE) [right of=C] {$\lnot e$};
\node[base node] (bot) [above right of=notE] {$\bot$};
\path[]
(notA) edge [] node {$8$} (B)
(B) edge [] node {$3$} (notD)
(notD) edge [] node {$5$} (E)
(notD) edge [] node {$7$} (C)
(C) edge [] node {$6$} (notE)
(notE) edge [] node {} (bot)
(E) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$6. \; a \lor \lnot c \lor \lnot e$}
\AxiomC{$7. \; \lnot b \lor c \lor d$}
\BinaryInfC{$a \lor \lnot b \lor d \lor \lnot e$}
\AxiomC{$5. \; d \lor e$}
\BinaryInfC{$a \lor \lnot b \lor d$}
\AxiomC{$3. \; \lnot b \lor \lnot d$}
\BinaryInfC{$ a \lor \lnot b$}
\AxiomC{$8. \; a \lor b$}
\BinaryInfC{$a$}
\end{prooftree}
\vspace{1cm}
\scalebox{0.87}{
\begin{dplltabular}{2}
\dpllStep{15|16}
\dpllDecL{0|0}
\dpllAssi{$a, \lnot c, b$|
$a, \lnot c, b, \lnot d$}
\dpllClause{1}{$\lnot a,\lnot c$}
{\done|\done}
\dpllClause{2}{$b,c$}
{\done|\done}
\dpllClause{3}{$\lnot b, \lnot d$}
{$\lnot d$|\done}
\dpllClause{4}{$\lnot d, e$}
{$\lnot d,e$|\done}
\dpllClause{5}{$d, e$}
{$d,e$|$e$}
\dpllClause{6}{$a, \lnot c, \lnot e$}
{\done|\done}
\dpllClause{7}{$\lnot b, c, d$}
{$d$|\conflict}
\dpllClause{8}{\textcolor{gray}{$a.b$}}
{\done|\done}
\dpllClause{9}{\textcolor{gray}{$a$}}
{\done|\done}
\dpllBCP{$\lnot d$|-}
\dpllPL{-|-}
\dpllDeci{-|UNSAT}
\end{dplltabular}
}
Second Conflict in Step 16: \\
\begin{conflictgraph}
\node (0) {};
\node[base node] (A) [right of=0] {$a$};
\node[base node] (notC) [right of=A] {$\lnot c$};
\node[base node] (B) [right of=notC] {$b$};
\node[base node] (notD) [right of=B] {$\lnot d$};
\node[base node] (D) [below of=notD] {$d$};
\node[base node] (bot) [above right of=D] {$\bot$};
\path[]
(0) edge [] node {$9$} (A)
(A) edge [] node {$1$} (notC)
(notC) edge [] node {$2$} (B)
(B) edge [] node {$3$} (D)
(B) edge [] node {$7$} (notD)
(notD) edge [] node {} (bot)
(D) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$7. \; \lnot b \lor c \lor d$}
\AxiomC{$3. \; \lnot b \lor \lnot d$}
\BinaryInfC{$\lnot b \lor c$}
\AxiomC{$2. \; b \lor c$}
\BinaryInfC{$c$}
\AxiomC{$1. \; \lnot a \lor \lnot c$}
\BinaryInfC{$\lnot a$}
\AxiomC{$9. \; a$}
\BinaryInfC{$\bot$}
\end{prooftree}