You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

92 lines
3.1 KiB

First Conflict in Step 6: \\
\begin{conflictgraph}
\node[base node] (notA) {$\lnot a$};
\node[base node] (notB) [below of=notA] {$\lnot b$};
\node[base node] (C) [right of=notB] {$c$};
\node[base node] (notE) [above right of=C] {$\lnot e$};
\node[base node] (D) [above right of=notE] {$d$};
\node[base node] (notD) [below right of=notE] {$\lnot d$};
\node[base node] (bot) [below right of=D] {$\bot$};
\path[]
(notA) edge [] node {$6$} (notE)
(notB) edge [] node {$2$} (C)
(C) edge [] node {$6$} (notE)
(notE) edge [] node {$4$} (D)
(notE) edge [] node {$5$} (notD)
(notD) edge [] node {} (bot)
(D) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$4. \; \lnot d \lor e$}
\AxiomC{$5. \; d \lor e$}
\BinaryInfC{$e$}
\AxiomC{$6. \; a \lor \lnot c \lor \lnot e$}
\BinaryInfC{$a \lor \lnot c$}
\AxiomC{$2. \; b \lor c$}
\BinaryInfC{$ a \lor b$}
\end{prooftree}
\vspace{1cm}
Second Conflict in Step 11: \\
\begin{conflictgraph}
\node[base node] (notA) {$\lnot a$};
\node[base node] (B) [right of=notA] {$b$};
\node[base node] (notD) [right of=B] {$\lnot d$};
\node[base node] (E) [right of=notD] {$e$};
\node[base node] (C) [below of=E] {$c$};
\node[base node] (notE) [right of=C] {$\lnot e$};
\node[base node] (bot) [above right of=notE] {$\bot$};
\path[]
(notA) edge [] node {$8$} (B)
(B) edge [] node {$3$} (notD)
(notD) edge [] node {$5$} (E)
(notD) edge [] node {$7$} (C)
(C) edge [] node {$6$} (notE)
(notE) edge [] node {} (bot)
(E) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$6. \; a \lor \lnot c \lor \lnot e$}
\AxiomC{$7. \; \lnot b \lor c \lor d$}
\BinaryInfC{$a \lor \lnot b \lor d \lor \lnot e$}
\AxiomC{$5. \; d \lor e$}
\BinaryInfC{$a \lor \lnot b \lor d$}
\AxiomC{$3. \; \lnot b \lor \lnot d$}
\BinaryInfC{$ a \lor \lnot b$}
\AxiomC{$8. \; a \lor b$}
\BinaryInfC{$a$}
\end{prooftree}
\vspace{1cm}
Second Conflict in Step 16: \\
\begin{conflictgraph}
\node (0) {};
\node[base node] (A) [right of=0] {$a$};
\node[base node] (notC) [right of=A] {$\lnot c$};
\node[base node] (B) [right of=notC] {$b$};
\node[base node] (notD) [right of=B] {$\lnot d$};
\node[base node] (D) [below of=notD] {$d$};
\node[base node] (bot) [above right of=D] {$\bot$};
\path[]
(0) edge [] node {$9$} (A)
(A) edge [] node {$1$} (notC)
(notC) edge [] node {$2$} (B)
(B) edge [] node {$3$} (D)
(B) edge [] node {$7$} (notD)
(notD) edge [] node {} (bot)
(D) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$7. \; \lnot b \lor c \lor d$}
\AxiomC{$3. \; \lnot b \lor \lnot d$}
\BinaryInfC{$\lnot b \lor c$}
\AxiomC{$2. \; b \lor c$}
\BinaryInfC{$c$}
\AxiomC{$1. \; \lnot a \lor \lnot c$}
\BinaryInfC{$\lnot a$}
\AxiomC{$9. \; a$}
\BinaryInfC{$\bot$}
\end{prooftree}