You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

104 lines
3.2 KiB

\begin{conflictgraph}
\node[base node] (notA) {$\lnot a$};
\node[base node] (B) [right of=notA] {$b$};
\node[base node] (C) [right of=B] {$c$};
\node[base node] (D) [below right of=C] {$d$};
\node[base node] (E) [right of=C] {$e$};
\node[base node] (notE) [right of=D] {$\lnot e$};
\node[base node] (bot) [above right of=notE] {$\bot$};
\path[]
(notA) edge [] node {$7$} (B)
(B) edge [] node {$3$} (C)
(C) edge [] node {$4$} (D)
(C) edge [] node {$5$} (E)
(D) edge [] node {$6$} (notE)
(notE) edge [] node {} (bot)
(E) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$6. \; \lnot d \lor \lnot e$}
\AxiomC{$4. \; \lnot c \lor d$}
\BinaryInfC{$\lnot e \lor \lnot c$}
\AxiomC{$5. \; \lnot c \lor e$}
\BinaryInfC{$\lnot c$}
\AxiomC{$3. \; \lnot b \lor c$}
\BinaryInfC{$\lnot b$}
\AxiomC{$7. \; a \lor b$}
\BinaryInfC{$a$}
\end{prooftree}
\begin{dplltabular}{9}
\dpllStep{(1)|11|12|13|14|15}
\dpllDecL{0 |0 |0 |0 |0 |0}
\dpllAssi{-|
$a$|
$a, b$|
$a, b, c$|
$a, b, c, d$|
$a, b, c, d, \lnot e$}
\dpllClause{1}{$a,b,c$}
{$a,b,c$|\done|\done|\done|\done|\done}
\dpllClause{2}{$\lnot a,b$}
{$\lnot a, b$|$b$|\done|\done|\done|\done}
\dpllClause{3}{$\lnot b, c$}
{$\lnot b, c$|$\lnot b,c$|$c$|\done|\done|\done}
\dpllClause{4}{$\lnot c,d$}
{$\lnot c,d$|$\lnot c,d$|$\lnot c,d$|$d$|\done|\done}
\dpllClause{5}{$\lnot c,e$}
{$\lnot c,e$|$\lnot c,e$|$\lnot c,e$|$e$|$e$|\conflict}
\dpllClause{6}{$\lnot d, \lnot e$}
{$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot e$|$\lnot e$|\done}
\dpllClause{7}{$a, b$}
{$a,b$|\done|\done|\done|\done|\done}
\dpllClause{8}{$a$}
{$a$|\done|\done|\done|\done|\done}
\dpllBCP {$a$|$b$|$c$|$d$|$\lnot e$|-}
\dpllPL {-|-|-|-|-|-}
\dpllDeci{-|-|-|-|-|UNSAT}
\end{dplltabular}
\begin{conflictgraph}
\node (0){};
\node[base node] (A) [right of=0] {$a$};
\node[base node] (B) [right of=A] {$b$};
\node[base node] (C) [right of=B] {$c$};
\node[base node] (D) [below right of=C] {$d$};
\node[base node] (E) [right of=C] {$e$};
\node[base node] (notE) [right of=D] {$\lnot e$};
\node[base node] (bot) [above right of=notE] {$\bot$};
\path[]
(0) edge [] node {8} (A)
(A) edge [] node {2} (B)
(B) edge [] node {3} (C)
(C) edge [] node {4} (D)
(C) edge [] node {5} (E)
(D) edge [] node {6} (notE)
(notE) edge [] node {} (bot)
(E) edge [] node {} (bot);
\end{conflictgraph}
\begin{prooftree}
\AxiomC{$6. \; \lnot d \lor \lnot e$}
\AxiomC{$4. \; \lnot c \lor d$}
\BinaryInfC{$\lnot e \lor \lnot c$}
\AxiomC{$5. \; \lnot c \lor e$}
\BinaryInfC{$\lnot c$}
\AxiomC{$3. \; \lnot b \lor c$}
\BinaryInfC{$\lnot b$}
\AxiomC{$2. \; \lnot a \lor b$}
\BinaryInfC{$\lnot a$}
\AxiomC{$8. \; a$}
\BinaryInfC{$\bot$}
\end{prooftree}