You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

37 lines
946 B

\item \self Consider the propositional formula $\varphi = p \imp
(q \imp r)$.
\begin{enumerate}
\item Fill out the truth table for $\varphi$ and its
subformulas.
\begin{tabular}{|c|c|c||c|c|c|}
\hline
$p$&$q$&$r$&$(q \imp r)$&$\varphi=p \imp (q \imp r)$\\
\hline
\hline
\textbf{F} &\textbf{F} &\textbf{F} & & \\
\hline
\textbf{F} &\textbf{F} &\textbf{T} & & \\
\hline
\textbf{F} &\textbf{T} &\textbf{F} & & \\
\hline
\textbf{F} &\textbf{T} &\textbf{T} & & \\
\hline
\textbf{T} &\textbf{F} &\textbf{F} & & \\
\hline
\textbf{T} &\textbf{F} &\textbf{T} & & \\
\hline
\textbf{T} &\textbf{T} &\textbf{F} & & \\
\hline
\textbf{T} &\textbf{T} &\textbf{T} & & \\
\hline
\end{tabular}
\item Is $\varphi$ satisfiable?
\item Give a formula $\psi$ that is semantically equivalent to
$\varphi$, but does not use the ``$\imp$'' connective.
\item How can you check whether $\psi$ is semantically equivalent
to $\varphi$?
\end{enumerate}