Questionnaire “Logic and Computability”

Summer Term 2023

Contents

6 SMT Solvers and 73|
[6.1 73 Programming Examples| o oo oo

6 SMT Solvers and Z3

6.1 Z3 Programming Examples

10

11

12

10

11

12

13

14

15

16

17

18

20

21

22

6.1.1 Let a and b be Boolean variables. Complete the python code with the appropriate variable
declarations and constraint statements to check whether the following equivalence holds:

=(aAb) = (-aV-b).

from z3 import *

solver = Solver()
a, b = Bools("a b")
1, r = Bools("1 r"

solver.add(l == Not(And(a, b)))
solver.add(r == Or(Not(a), Not(b)))
solver.add(Distinct (1, r))

result = solver.check()
print (result)

6.1.2 Complete the following snippet of the python script with the necessary constraint state-
ments.

The script reads a file that represents a size_x X size_y grid, which includes walkable cells
denoted by *_ .

Write constraints for the variables coords_x and coords_y such that the variables can only
take values that are within the boundaries of the grid and can only represent walkable cells.

from z3 import *
size_y = len(grid)
size_x = len(grid[0])

Int("coords_x")
Int("coords_y")

coords_
coords_y

»
]

Enforce that the position ts in the grid, use size_x and size_y
solver.add(coords_x >= 0)

solver.add(coords_x < size_x)

solver.add(coords_y >= 0)

solver.add(coords_y < size_y)

Enforce that the coordinates can only be a wvalid cell
for i in range(size_y):
for j in range(size_x):
if grid[i][j] '= "_":
solver.add(Not (And(coords_y == i, coords_x == j)))

6.1 Z3 Programming Examples

6 SMT SOLVERS AND Z3

10

11

12

13

14

15

17

6.1.3 Given a 2-bit bitvector x, we want to check whether it is possible that x +1 < x — 1.

The following python script returns sat. Explain the error in the script and expand it such that

it correctly prints unsat.

from z3 import *

solver = Solver()

bvX = BitVec("bvX", 2)
solver.add(bvX + 1 < bvX - 1)

solver.add (BVAddNoOverflow(bvX, 1, True))
solver.add (BVSubNoUnderflow(bvX, 1, True))

result = solver.check()
print (result)
if result == sat:

print (solver.model())

Page 2 of |§|

6.

1 Z3 Programming Examples 6 SMT SOLVERS AND Z3

10

11

10

11

6.1.4 Let a and b be Boolean variables. Complete the python code with the appropriate variable
declarations and constraint statements to check whether the following equivalence holds:

=(aVb) = (—aA-d).

from z3 import *

solver Solver()

result = solver.check()
print (result)

6.1.5 Let p and ¢ be Boolean variables. Complete the python code with the appropriate variable
declarations and constraint statements to check whether the following equivalence holds:

(r—>q9) =(pVq.

from z3 import *

solver Solver()

result = solver.check()
print (result)

6.1.6 Let p, ¢ and r be Boolean variables. Complete the python code with the appropriate
variable declarations and constraint statements to check whether the following equivalence holds:

pV(gAr)={@VaApVr).

from z3 import *

solver = Solver()

Page 3 of |§|

6.1 Z3 Programming Examples 6 SMT SOLVERS AND Z3

11
12 result = solver.check()
13 print(result)

6.1.7 Let z and y be two 32-bit vector variables. Complete the python code with the appropriate
variable declarations and constraint statements to check whether the following equivalence holds:

z®y=(((yAz)*=2) + (y +2))

1 from z3 import *

3 s = Solver()

10
11
12
13
14 print(s.check())

15

6.1.8 Let z and y be two 32-bit vector variables. Complete the script such that it checks whether
abs(z) can be computed in the following way:

y=x>>3l1 (1)
abs(z) = (zdy) —vy (2)

The script should compare the result with the built-in function Abs(x) from z3.

1 from z3 import *

3 solver = Solver()

10

11

12

13

14

15

16

17

Page 4 of |§|

6.

1 Z3 Programming Examples

6 SMT SOLVERS AND Z3

10

11

12

13

14

15

16

17

18

19

20

21

result = solver.check()
print (result)

6.1.9 Consider the following script. What are the outputs of the two calls to solver.check()?
Explain your answers. In particular, elaborate the difference of using an Int () and a BitVec()

for the variables.

from z3 import *
solver = Solver()

intX = Int("intX")
bvX BitVec ("bvX", 2)

solver.push()

solver.add(bvX + 1 < bvX - 1)

result = solver.check()

print(result)

if result == sat:
print(solver.model())

solver.pop()

solver.push()
solver.add(intX + 1 < intX - 1)
result = solver.check()
print (result)
if result == sat:
print (solver.model())

Solution

There is no solution available for this question yet.

6.1.10 Given a 4-bit bitvector x, we want to check whether it is possible that -2 > z - 4.

The following python script returns sat. Explain the error in the script and expand it such that

it correctly prints unsat.

from z3 import *

Page 5 of @

6.1 Z3 Programming Examples

6 SMT SOLVERS AND Z3

10

11

12

13

14

15

17

solver = Solver()
bvX = BitVec("bvX", 4)

solver.add(UGT (bvX * 2,bvX * 4))

result = solver.check()

print (result)

if result == sat:
print(solver.model())

print (solver.model() .evaluate(bvX * 2))
print(solver.model() .evaluate(bvX * 4))

Page 6 of |§|

	SMT Solvers and Z3
	Z3 Programming Examples

