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9 Satisfiability Modulo Theories
9.1 Definitions and Notations

9.1.1 Give the definition of a theory of formulas in first-order logic.

Solution
A theory is as a pair (Σ;A) where Σ is a signature which defines a set of constant,
function, and predicate symbols. The set of axioms A is a set of closed predicate logic
formulas in which only constant, function, and predicate symbols of Σ appear.

9.1.2 Explain the concept of a theory in first-order logic using the theory of Linear Integer
Arithmetic TLIA as example.

Solution
Variables in TLIA are of integer sort (Z). The functions of TLIA are + and − and the
predicates are =, 6=, <,>,≤, and ≥. The axioms withing TLIA define the meaning for
these functions and predicates.
Therefore, for the theory of Linear Integer Arithmetic TLIA we have:

• Σ = Z ∪ {+,−} ∪ {=, 6=, <,≤, >,≥}

• A defines the usual meaning to all symbols:

– Constant symbols are mapped to the corresponding value in Z.
– + is interpreted as the function 0+0 → 0, 0+1 → 1, . . .. − follows it analogous

interpretation.
– The predicate symbols are interpreted as their respective comparison operator.

9.1.3 Explain the problem of satisfiability modulo theories. As part of your explanation, explain
what a theory is and explain the meaning of theory-satisfiability.

Solution
The satisfiability modulo theories (SMT) problem refers to the problem of determining
whether a formula in predicate logic is satisfiable with respect to some theory. A theory
fixes the interpretation/meaning of certain predicate and function symbols. Checking
whether a formula in predicate logic is satisfiable with respect to a theory means that
we are not interested in arbitrary models but in models that interpret the functions and
predicates contained in the theory as defined by the axioms in the theory.

9.1.4 Give the definitions of T -terms, T -atoms and T -literals for SMT formulas.

Solution
• T -terms: A T -term is either a constant or variables x, y, . . .. An application of a

function symbol in Σ where all inputs are T -terms is a T -term.
Examples for T -terms in TLIA are: x+ 2, 5, x− y.

• T -atom: A T -atom is the application of a predicate symbol in Σ where all inputs
are T -terms.
Examples for T -atoms in TLIA are: x+ 2 > 0, 5 ≤ 2, x− y > 10.

• T -literal: A T -literal is a T -atoms or its negation.
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9.1.5 What is the difference between a model of an SMT formula and a model of a predicate
logic formula without a theory?

Solution
A model in predicate logic needs to define the domain of the variables and needs to define
a concrete meaning to all predicate and function symbols and free variables involved.
In SMT, the domain and the interpretation of the predicate and function symbols is fixed.
A model for an SMT formula only defines an assignment to all free variables within the
formula.

9.1.6 Given the signature ΣEUF := {a, b, c, . . .} ∪ {f, g, h, . . .} ∪ {=, P,Q,R, . . .}, of the Theory
of Equality and Uninterpreted Functions TEUF . State the axioms AEUF of TEUF .

Solution
The axioms AEUF are the following:

(a) ∀x. x = x (reflexivity)

(b) ∀x, y. x = y → y = x (symmetry)

(c) ∀x, y, z. x = y ∧ y = z → x = z (transitivity)

(d) ∀x, y. (
∧n

i=1 xi = yi) → f(x) = f(y) (congruence)

(e) ∀x, y. (
∧n

i=1 xi = yi) → (P (x) ↔ P (y)) (equivalence)

9.1.7 Explain the concepts of eager encoding and lazy encoding in the context of solving formulas
in SMT.

Solution
• In eager encoding, all axioms of the theory are explicitly incorporated into the

input formula. The resulting equisatisfiable propositional formula is then given to
a SAT solver.

• SMT solvers that use lazy encoding use specialized theory solvers in combination
with SAT solvers to decide the satisfiability of formulas within a given theory.
In contrast to eager encoding, where a sufficient set of constraints is computed
at the beginning, lazy encoding starts with no constraints at all, and lazily adds
constraints only when required.

9.1.8 In the following list tick all formulas that are axioms of the theory of equalities and unin-
terpreted functions TEUF .

� ∀x (x = x)

� ∀x ∀y (x = y ∨ y = x)

� ∀x ∀y ∀z (x = y ∧ y = z → x = z)

� ∀x ∀y (f(x) = f(y) → x = y)

9.1.9 A first-order theory T is defined by a signature Σ and a set of axioms A. Consider the
Theory of Equality TE . Give its signature ΣE and its axioms AE .

Solution
There is no solution available for this question yet.
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9.1.10 What is an uninterpreted function? What is the difference between an uninterpreted and
an interpreted function? What are the properties of an uninterpreted function?

Solution
There is no solution available for this question yet.

9.1.11 Considering formulas ϕ and ψ regarding a theory T .

• When is a formula ϕ T -valid?
• When is a formula ϕ T -satisfiable?
• When does ϕ T -entail ψ?

Solution
There is no solution available for this question yet.

9.2 Eager Encoding
9.2.1 Explain the concept of eager encoding to solve formulas in in SMT. State the 3 main steps
that are performed in algorithms based on eager encoding.

Solution
The main idea of eager encoding is that the input formula is translated into a proposi-
tional formula with all relevant theory-specific information encoded into the formula.

(I) Replace any unique T -atom in the original formula ϕ with a fresh propositional
variable to get a propositional formula ϕ̂.

(II) Generate a propositional formula ϕcons that constrains the values of the introduced
propositional variables to preserve the information of the theory.

(III) Invoke a SAT solver on the propositional formula ϕprop := ϕ̂ ∧ ϕcons that corre-
sponds to an equisatisfiable propositional formula to ϕ.

9.2.2 Explain the specific translations used in eager encoding to decide formulas in the theory
of equality and uninterpreted functions.

Solution
The translations used in the eager approach for TEUF are:

(a) Ackermann Reduction: to remove all function instances, resulting in an equisatis-
fiable formula in TE .

(b) Graph-Based Reduction: to remove all equality instances, resulting in an equisat-
isfiable formula in propositional logic.

9.2.3 Given the formula

ϕEUF := f(x) = f(y) ∨ (z = y ∧ z 6= f(z))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .
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Solution

ϕFC := (x = y → fx = fy)∧
(x = z → fx = fz)∧
(y = z → fy = fz)

ϕ̂EUF := fx = fy ∨ (z = y ∧ z 6= fz)

ϕE := ϕ̂EUF ∧ ϕFC

9.2.4 Given the formula

ϕEUF := f(g(x)) = f(y) ∨ (z = g(y) ∧ z 6= f(z))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution

ϕFC := (x = y → gx = gy)∧
(gx = y → fgx = fy)∧
(gx = z → fgx = fz)∧
(y = z → fy = fz)

ϕ̂EUF := fgx = fy ∨ (z = gy ∧ z 6= fz)

ϕE := ϕ̂EUF ∧ ϕFC

9.2.5 Given the formula

ϕEUF := f(x, y) = f(y, z) ∨ (z = f(y, z) ∧ f(x, x) 6= f(x, y))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution

ϕFC := (x = y ∧ y = z → fxy = fyz)∧
(x = x ∧ y = x→ fxy = fxx)∧
(y = x ∧ z = x→ fyz = fxx)

ϕ̂EUF := fxy = fyz ∨ (z = fyz ∧ fxx 6= fxy)

ϕE := ϕ̂EUF ∧ ϕFC

9.2.6 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕE := (a = b ∨ a = d) → (b = c ∧ c 6= d)
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Solution
We choose:

• Triangle 1: a-b-c

• Triangle 2: a-c-d

ϕTC :=(ea=b ∧ eb=c → ea=c)∧
(ea=b ∧ ea=c → eb=c)∧
(eb=c ∧ ea=c → ea=b)∧

(ea=c ∧ ec=d → ea=d)∧
(ea=c ∧ ea=d → ec=d)∧
(ec=d ∧ ea=d → ea=c)

ϕ̂E := (ea=b ∨ ea=d → (eb=c ∧ ¬ec=d)

ϕprop := ϕTC ∧ ϕ̂E

9.2.7 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕE := (a = b ∨ a = d) → (b = c ∧ c 6= e ∧ e 6= d)
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Solution
We choose:

• Triangle 1: a-b-c

• Triangle 2: a-c-d

• Triangle 3: c-d-e

ϕTC :=(ea=b ∧ eb=c → ea=c)∧
(ea=b ∧ ea=c → eb=c)∧
(eb=c ∧ ea=c → ea=b)∧

(ea=c ∧ ec=d → ea=d)∧
(ea=c ∧ ea=d → ec=d)∧
(ec=d ∧ ea=d → ea=c)∧

(ec=e ∧ ec=d → ed=e)∧
(ec=e ∧ ed=e → ec=d)∧
(ec=d ∧ ed=e → ec=e)

ϕ̂E := (ea=b ∨ ea=d → (eb=c ∧ ¬ec=e ∧ ¬ee=d)

ϕprop := ϕTC ∧ ϕ̂E

9.2.8 Given the formula

ϕEUF := f(x) = y∧x = g(x)∨x 6= f(x)∧g(x) = f(g(x))∨y 6= g(x)∧x = f(y)∧g(y) = f(g(x))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution

ϕ̂EUF := fx = y ∧ x = gx ∨ x 6= fx ∧ gx = fgx ∨ y 6= gx ∧ x = fy ∧ gy = fgx

ϕFC := (x = y → gx = gy) ∧
(x = y → fx = fy) ∧
(x = gx → fx = fgx) ∧
(y = gx → fy = fgx)

ϕE := ϕ̂EUF ∧ ϕFC

9.2.9 Given the formula

ϕEUF := f(a, b) = x ∧ f(x, y) 6= g(a) ∨ f(m,n) = b ∨ f(g(a), y) 6= a
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Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution
There is no solution available for this question yet.

9.2.10 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

a 6= b ∧ b = c ∨ c = d→ ¬(d 6= e ∨ e = f) ∧ ¬(f = g ∧ a 6= e)

Solution

a

b

c

d

ef

g

ϕTC = ((ea=b ∧ eb=e) → ea=e) ∧
((ea=b ∧ ea=e) → eb=e) ∧
((ea=e ∧ eb=e) → ea=b) ∧

((eb=c ∧ ec=e) → eb=e) ∧
((eb=c ∧ eb=e) → ec=e) ∧
((eb=e ∧ ec=e) → eb=c) ∧

((ec=d ∧ ed=e) → ec=e) ∧
((ec=d ∧ ec=e) → ed=e) ∧
((ec=e ∧ ed=e) → ec=d)

ϕ̂E := ¬ea=b ∧ eb=c ∨ ec=d → ¬(¬ed=e ∨ ee=f ) ∧ ¬(ef=g ∧ ¬ea=e)

ϕprop := ϕTC ∧ ϕ̂E

9.2.11 In the following list tick all statements that conform to the eager encoding approach for
the implementation of SMT solver.

� Eager encoding is based on the interaction between a SAT solver and a so-called theory
solver.

� Eager encoding involves translating the original formula to an equisatisfiable boolean for-
mula in a single step.
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� Eager encoding is based on the direct encoding of axioms.
� Eager encoding starts with no constraints at all and adds constraints only when needed.

9.2.12 Given the formula

ϕEUF := f(x, y) = g(x) → [f(g(y), z) = x ∨ ¬(g(z) = y)] .

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution
There is no solution available for this question yet.

9.2.13 Given the formula

ϕEUF := f(g(x), h(y)) = a ∨ b = f(u, v) → k(a, b) = u ∧ v = k(x, y)

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution
There is no solution available for this question yet.

9.2.14 When applying eager encoding to decide the satisfiability of a formula in TEUF , explain
how reflexivity, symmetry and transitivity are handled within the graph-based reduction.

Solution
There is no solution available for this question yet.

9.2.15 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕEUF := x 6= y ∧ y = gx ∨ gx = gy → ¬(gy 6= z ∨ z = fx) ∧ ¬(fx = fy ∧ x 6= z)

Solution
There is no solution available for this question yet.

9.2.16 Consider the following formula in TEUF .

ϕEUF := f(x) = f(y) ∧ f(y) = y ∨ f(g(x)) = f(f(y)) ∧ g(x) = x

∨f(x) 6= f(y) ∧ y 6= g(f(y)) ∧ x 6= g(x)

• Use Ackermann’s reduction to compute an equisatisfiable formula in TE .
• Then perform the graph-based reduction on the outcome of Ackermann’s reduction to

construct an equisatisfiable propositional formula ϕprop.

Solution
There is no solution available for this question yet.
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9.2.17 Given the formula

f(x) = g(x) ∨ z = f(y) → f(z) 6= g(y) ∧ x = z

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution
There is no solution available for this question yet.

9.2.18 Given the formula

ϕEUF := f(x) = y∧x = g(x)∨x 6= f(x)∧g(x) = f(g(x))∨y 6= g(x)∧x = f(y)∧g(y) = f(g(x))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution
There is no solution available for this question yet.

9.2.19 Given the formula

ϕEUF := x = f(x, y) ∧ x 6= y ↔ z = f(x, y) ∨ f(y, z) 6= z ∧ y 6= f(x, y) ∨ y = f(x, z)

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Solution
There is no solution available for this question yet.

9.2.20 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕE := x 6= y ∧ y = c ∨ c = d→ ¬(d 6= z ∨ z = a) ∧ ¬(a = b ∧ x 6= z).

Solution
There is no solution available for this question yet.

9.2.21 Consider the following formula in TEUF .

ϕEUF := (y = z ∨ f(x) = f(y)) → (x = z ∨ f(x) = x ∧ f(x) = y)

• Use Ackermann’s reduction to compute an equisatisfiable formula in TE .
• Then perform the graph-based reduction on the outcome of Ackermann’s reduction to

construct an equisatisfiable propositional formula ϕprop.

Solution
There is no solution available for this question yet.
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9.3 Lazy Encoding
9.3.1 Give the definition of the propsitional skeleton of a formula ϕ in a given theory T . Give
an example for a formula ϕ in TLIA and its corresponding propositional skeleton skel(ϕ).

Solution
The propositional skeleton skel(ϕ) of a formula ϕ is obtained by replacing each occurance
of a T -literal with a propositional variable.
An example for a formula ϕ in TLIA:

ϕ := (x > y) ∨ (x > z),

and the corresponding skeleton skel(ϕ):

e1 ∨ e2,

where e1 ≡ x > y and e2 ≡ x > z.

9.3.2 Explain the concept of lazy encoding to decide satisfiability of formulas in a first-order
theory.

Solution
The propositional skeleton of ϕ is given to a SAT solver. If a satisfying assignment is
found, it is checked by a theory solver. If the assignment is consistent with the theory,
ϕ is T -satisfiable. Otherwise, a blocking clause is generated and the SAT solver searches
for a new assignment. This is repeated until either a T -consistent assignment is found,
or the SAT solver cannot find any more assignments.
See figure in lecture notes on page 11.

9.3.3 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := x = f(y) ∧ x 6= y ∧ y 6= u ∧ y = f(u) ∧ z 6= f(u)∧
u = v ∧ v = z ∧ v = f(y) ∧ v 6= f(z) ∧ f(x) 6= f(z)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution

{x, f(y)}, {y, f(u)}, {u, v}, {v, z}, {v, f(y)}, {f(x)}, {f(z)}
{x, f(y)}, {y, f(u)}, {u, v, z, v, f(y), {f(x)}, {f(z)}}
{x, f(y), u, v, z, v}, {y, f(u)}, {f(x)}, {f(z)}
{x, f(y), u, v, z, v}, {y, f(u)}, {f(x), f(z)}
{x, f(y), u, v, z, v}, {y, f(u)}, {f(x), f(z)}

Checking the disequality f(x) 6= f(z) leads to the result that the assignment is UNSAT,
since f(x) and f(z) are in the same congruence class.

9.3.4 In the following list tick all statements that conform to the lazy encoding approach for the
implementation of SMT solver.

� Lazy encoding is based on the interaction between a SAT solver and a so-called theory
solver.
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� Lazy encoding involves translating the original formula to an equisatisfiable Boolean for-
mula in a single step.

� Lazy encoding is based on the direct encoding of axioms.
� Lazy encoding starts with no constraints at all and adds constraints only when needed.

9.3.5 To decide SMT formulas, the lazy approach uses a theory solver in combination with a
SAT solver. Explain what a theory solver is. Explain what the inputs and outputs of a theory
solver are and how it is used within the lazy encoding approach.

Solution
There is no solution available for this question yet.

9.3.6 In the following list, mark all items that are true for an eager encoding procedure for TUE

with E, mark all items that are true for a lazy encoding procedure with L, and mark all items
which neither belong to an eager nor a lazy encoding procedure with N.

� Only one call to a propositional SAT solver is required.

� A propositional formula that is equisatisfiable to the original theory formula is constructed
before calling any solver.

� A propositional SAT solver and a theory solver for the conjunctive fragment of the theory
interact with each other.

� For a theory-inconsistent assignment of literals, a blocking clause is created.

9.3.7 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := x = y ∧ y = f(y) ∧ y 6= f(x) ∧ z = f(z) ∧ f(z) = f(x) ∧ z = f(y)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.8 What does the congruence closure algorithm compute? State the inputs and output of the
algorithm.
In the context of deciding satisfiability of formulas in TEUF , what is the congruence closure
algorithm used for?

Solution
There is no solution available for this question yet.

9.3.9 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(a) = c ∧ f(c) 6= f(d) ∧ b = f(c) ∧ a 6= f(c) ∧ c = d ∧ b 6= d ∧ a = c

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.
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9.3.10 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := a = b ∧ c 6= d ∧ f(a) = c ∧ f(b) 6= f(c) ∧ f(a) = f(d) ∧ f(b) = c ∧ f(d) = f(c)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.11 Consider the following formula in the conjunctive fragment of TEUF .

f(b) = a ∧ c 6= d ∧ f(e) = b ∧ d 6= f(b) ∧ f(a) = f(e) ∧
b 6= f(b) ∧ a 6= e ∧ f(a) = e ∧ a = c ∧ f(b) 6= e ∧ d = f(c)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.12 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(b) = a ∧ e = b ∧ c = f(c) ∧ d 6= f(e) ∧ f(a) = f(d) ∧ a 6= f(c) ∧ d = f(a)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.13 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(o) = k ∧ l 6= f(m) ∧ n 6= l ∧ f(k) = m ∧ f(o) = f(k) ∧ o 6= k∧
l 6= f(n) ∧ f(m) 6= k ∧m 6= f(m) ∧ o = n ∧ f(m) = o

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.14 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(b) = a ∧ e = b ∧ c = f(c) ∧ d 6= f(e) ∧ f(a) = f(d) ∧ a 6= f(c) ∧ d = f(a)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution

{f(b), a}, {e, b}, {c, f(c)}, {f(e)}, {f(a), f(d)}, {d, f(a)}
{f(b), a}, {e, b}, {c, f(c)}, {f(e)}, {f(a), f(d), d}
{f(b), a, f(e)}, {e, b}, {c, f(c)}, {f(a), f(d), d}

Checking the disequalities d 6= f(e) and a 6= f(c) leads to the result that the assignment
is SAT, since neither d and f(e) nor a and f(c) are in the same congruence class.
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9.3.15 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(o) = k ∧ l 6= f(m) ∧ n 6= l ∧ f(k) = m ∧ f(o) = f(k) ∧ o 6= k∧
l 6= f(n) ∧ f(m) 6= k ∧m 6= f(m) ∧ o = n ∧ f(m) = o

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution

{k, f(o)}, {l}, {m, f(k)}, {f(k), f(o)}, {f(n)}, {n, o}, {o, f(m)}
{k, f(k), f(o)}, {l}, {m, f(k)}, {f(n)}, {n, o}, {o, f(m)}
{k, f(k), f(o)}, {l}, {m, f(k)}, {f(n)}, {n, o, f(m)}
{k,m, f(k), f(o)}, {l}, {f(n)}, {n, o, f(m)}
{k,m, f(k), f(n), f(o)}, {l}, {n, o, f(m)}
{k,m, n, o, f(k), f(m), f(n), f(o)}, {l}

Checking the disequalities o 6= k, f(m) 6= k, m 6= f(m) leads to the result that the
assignment is UNSAT, since o and k, f(m) and k, m and f(m) are in the same congruence
class.

9.3.16 Use the lazy encoding approach to check whether the formula ϕ in TEUF is satisfiable.

ϕ := (x = y) ∧ (y = f(y)) ∧ (y 6= f(x)) ∧ (z = f(z)) ∧ (f(z) = f(x))
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Solution
We start by computing skel(ϕ):

• e0 ⇔ (x = y)

• e1 ⇔ (y = f(y))

• e2 ⇔ (y = f(x))

• e3 ⇔ (z = f(z))

• e4 ⇔ (f(z) = f(x))

skel(ϕ) = e0 ∧ e1 ∧ ¬e2 ∧ e3 ∧ e4
Step 1 2 3 4 5 6
Decision Level 0 0 0 0 0 0

Assignment - e0 e0, e1 e0, e1,¬e2
e0, e1,¬e2,

e3

e0, e1,¬e2,
e3, e4

Cl. 1: e0 e0 3 3 3 3 3

Cl. 2: e1 e1 e1 3 3 3 3

Cl. 3: ¬e2 ¬e2 ¬e2 ¬e2 3 3 3

Cl. 4: e3 e3 e3 e3 e3 3 3

Cl. 5: e4 e4 e4 e4 e4 e4 3

BCP e0 e1 ¬e2 e3 e4 -
PL - - - - - -
Decision - - - - - SAT

The SAT solver has computed that skel(ϕ) is satisfiable, we are therefore going to check
for consistency with the theory:

{x, y}, {y, f(y)}, {z, f(z)}, {f(z), f(x)}
{f(y), x, y}, {f(x), f(z), z}

The TEUF -Solver returned SAT, therefore ϕ is satisfiable.

9.3.17 Use the lazy encoding approach to check whether the formula ϕ in TEUF is satisfiable.

ϕ := (g(a) = c) ∧
(
(f(g(a)) 6= f(c)) ∨ (g(a) = d))

)
∧ (c 6= d)
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9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

Solution
We start by computing skel(ϕ):

• e0 ⇔ (g(a) = c)

• e1 ⇔ (f(g(a)) = f(c))

• e2 ⇔ (g(a) = d)

• e3 ⇔ (c = d)

skel(ϕ) = e0 ∧ ¬e1 ∧ e2 ∧ ¬e3
Step 1 2 3 4
Decision Level 0 0 0 0
Assignment - e0 e0,¬e3 e0,¬e3,¬e1
Cl. 1: e0 e0 3 3 3

Cl. 2: ¬e1, e2 ¬e1, e2 ¬e1, e2 ¬e1, e2 3

Cl. 3: ¬e3 ¬e3 ¬e3 3 3

BCP e0 ¬e3 - -
PL - - ¬e1 -
Decision - - - -

A satisfying assignment e0 ∧¬e1 ∧¬e3 has been found and we have to check consistency
of (g(a) = c) ∧ (f(g(a)) 6= f(c)) ∧ (c 6= d):

{g(a), c}, {f(g(a))}, {f(c)}, {d}
{g(a), c}, {d}, {f(c), f(g(a))}

Congruence Closure returns UNSAT because of: (f(g(a)) 6= f(c)).
We therefore add ¬e0 ∨ e1 ∨ e3 as a blocking clause and continue.

Step 5 6 7 8 9
Decision Level 0 0 0 0 0

Assignment - e0 e0,¬e3 e0,¬e3, e1
e0,¬e3, e1,

e2
Cl. 1: e0 e0 3 3 3 3

Cl. 2: ¬e1, e2 ¬e1, e2 ¬e1, e2 ¬e1, e2 e2 3

Cl. 3: ¬e3 ¬e3 ¬e3 3 3 3

Cl. 4: ¬e0, e3, e1 ¬e0, e3, e1 e3, e1 e1 3 3

BCP e0 ¬e3 e1 e2 -
PL - - - - -
Decision - - - - -

We have to check consistency for (g(a) = c) ∧ (f(g(a)) = f(c)) ∧ (g(a) = d) ∧ (c 6= d):

{g(a), c}, {f(g(a)), f(c)}, {g(a), d}
{f(g(a)), f(c)}, {c, d, g(a)}

Congruence Closure returns UNSAT because of: (c 6= d)
We therefore add ¬e0 ∨ e3 ∨ ¬e1 ∨ ¬e2 as a blocking clause and continue.

Step 10 11 12 13 14
Decision Level 0 0 0 0 0

Assignment - e0 e0,¬e3 e0,¬e3, e1
e0,¬e3, e1,

¬e2
Cl. 1: e0 e0 3 3 3 3

Cl. 2: ¬e1, e2 ¬e1, e2 ¬e1, e2 ¬e1, e2 e2 {} 7

Cl. 3: ¬e3 ¬e3 ¬e3 3 3 3

Cl. 4: ¬e0, e3, e1 ¬e0, e3, e1 e3, e1 e1 3 3

Cl. 5: ¬e0, e3,¬e1,¬e2
¬e0, e3,¬e1,

¬e2
e3,¬e1,¬e2 ¬e1,¬e2 ¬e2 3

BCP e0 ¬e3 e1 ¬e2 -
PL - - - - -
Decision - - - - UNSAT

Conflict in step 14

1

3

4

5

4
5

2

5

e0

¬e3

⊥
e1

¬e2

e2

2. ¬e1 ∨ e2 5. ¬e0 ∨ e3 ∨ ¬e1 ∨ ¬e2
¬e1 ∨ ¬e0 ∨ e3 4. ¬e0 ∨ e3 ∨ e1

¬e0 ∨ e3 1. e0
e3 3. ¬e3

⊥
Since the SAT solver cannot find a satisfying assignment we are done and conclude that
ϕ is UNSAT.
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