Questionnaire “Logic and Computability”

Summer Term 2023

Contents

[9__Satisfiability Modulo Theories|

9.2 Eager Encoding|.
03 Tazy Encoding]

9 Satisfiability Modulo Theories

9.1 Definitions and Notations

9.1.1 Give the definition of a theory of formulas in first-order logic.

Solution

A theory is as a pair (3;.A) where ¥ is a signature which defines a set of constant,
function, and predicate symbols. The set of axioms A is a set of closed predicate logic
formulas in which only constant, function, and predicate symbols of ¥ appear.

9.1.2 Explain the concept of a theory in first-order logic using the theory of Linear Integer
Arithmetic Trra as example.

_I Solution !

Variables in Tyr4 are of integer sort (Z). The functions of Trr4 are + and — and the
predicates are =, #,<,>, <, and >. The axioms withing T;;4 define the meaning for
these functions and predicates.

Therefore, for the theory of Linear Integer Arithmetic Tp;4 we have:

d E:ZU{+a_}U{:7#7<7Sa>7Z}
e A defines the usual meaning to all symbols:

— Constant symbols are mapped to the corresponding value in Z.

— + is interpreted as the function 0+0 — 0,0+1 — 1,.... — follows it analogous
interpretation.

— The predicate symbols are interpreted as their respective comparison operator.

9.1.3 Explain the problem of satisfiability modulo theories. As part of your explanation, explain
what a theory is and explain the meaning of theory-satisfiability.

_I Solution !

The satisfiability modulo theories (SMT) problem refers to the problem of determining
whether a formula in predicate logic is satisfiable with respect to some theory. A theory
fixes the interpretation/meaning of certain predicate and function symbols. Checking
whether a formula in predicate logic is satisfiable with respect to a theory means that
we are not interested in arbitrary models but in models that interpret the functions and
predicates contained in the theory as defined by the axioms in the theory.

9.1.4 Give the definitions of T -terms, T -atoms and T -literals for SMT formulas.

_I Solution !

o T-terms: A T-term is either a constant or variables x,y,.... An application of a
function symbol in ¥ where all inputs are T-terms is a 7-term.

Examples for 7-terms in Tpr4 are: x4+ 2, 5, x — y.

e T-atom: A T -atom is the application of a predicate symbol in 3 where all inputs
are 7T -terms.

Examples for T-atoms in Tpy4 are: z+2 > 0,5 <2, x —y > 10.

e T-literal: A T -literal is a T-atoms or its negation.

9.1 Definitions and Notations 9 SATISFIABILITY MODULO THEORIES

9.1.5 What is the difference between a model of an SMT formula and a model of a predicate
logic formula without a theory?

_I Solution !

A model in predicate logic needs to define the domain of the variables and needs to define
a concrete meaning to all predicate and function symbols and free variables involved.
In SMT, the domain and the interpretation of the predicate and function symbols is fixed.
A model for an SMT formula only defines an assignment to all free variables within the
formula.

9.1.6 Given the signature Xgyr = {a,b,¢,...} U{f,g,h,...} U{=,P,Q,R,...}, of the Theory
of Equality and Uninterpreted Functions Tpyp. State the axioms Agyp of Tgyr.

_I Solution !

The axioms Agyr are the following:

(a) Vz. = =z (reflexivity)

(b) Vz,y. x =y — y =z (symmetry)
(
(d

)
)
c) Va,y,z. x =y Ay =z — x =z (transitivity)
) VZ,5. (Nimyzi = i) = f(T) = f(7) (congruence)
)

(e) VZ,7. (Ai_,zi =y;) = (P(T) + P(7)) (equivalence)

9.1.7 Explain the concepts of eager encoding and lazy encoding in the context of solving formulas
in SMT.

_I Solution !

e In eager encoding, all axioms of the theory are explicitly incorporated into the
input formula. The resulting equisatisfiable propositional formula is then given to
a SAT solver.

e SMT solvers that use lazy encoding use specialized theory solvers in combination
with SAT solvers to decide the satisfiability of formulas within a given theory.
In contrast to eager encoding, where a sufficient set of constraints is computed
at the beginning, lazy encoding starts with no constraints at all, and lazily adds
constraints only when required.

9.1.8 In the following list tick all formulas that are axioms of the theory of equalities and unin-
terpreted functions TgyF.

O Va (z = x)

OVeVy(z=yVy=2x)

O VeVyVz(za=yAy=2z—>x=2)

O Vavy (f(z) = fly) =z =y)

9.1.9 A first-order theory T is defined by a signature ¥ and a set of axioms A. Consider the
Theory of Equality Tg. Give its signature X g and its axioms Ag.

Solution

There is no solution available for this question yet.

Page 2 of

9.2 FEager Encoding 9 SATISFIABILITY MODULO THEORIES

9.1.10 What is an uninterpreted function? What is the difference between an uninterpreted and
an interpreted function? What are the properties of an uninterpreted function?

Solution

There is no solution available for this question yet.

9.1.11 Considering formulas ¢ and v regarding a theory 7.

e When is a formula ¢ T-valid?
e When is a formula ¢ T -satisfiable?
e When does ¢ T-entail 97

Solution

There is no solution available for this question yet.

9.2 Eager Encoding

9.2.1 Explain the concept of eager encoding to solve formulas in in SMT. State the 3 main steps
that are performed in algorithms based on eager encoding.

_I Solution !

The main idea of eager encoding is that the input formula is translated into a proposi-
tional formula with all relevant theory-specific information encoded into the formula.

(I) Replace any unique T-atom in the original formula ¢ with a fresh propositional
variable to get a propositional formula ¢.

(IT) Generate a propositional formula @..y,s that constrains the values of the introduced
propositional variables to preserve the information of the theory.

(III) Invoke a SAT solver on the propositional formula @prop = @ A Yeons that corre-
sponds to an equisatisfiable propositional formula to .

9.2.2 Explain the specific translations used in eager encoding to decide formulas in the theory
of equality and uninterpreted functions.

_I Solution !

The translations used in the eager approach for Tgyp are:

(a) Ackermann Reduction: to remove all function instances, resulting in an equisatis-
fiable formula in Tz.

(b) Graph-Based Reduction: to remove all equality instances, resulting in an equisat-
isfiable formula in propositional logic.

9.2.3 Given the formula

opur = f@)=fy) vV =yAz# f(?))

Apply the Ackermann reduction to compute an equisatisfiable formula in 7.

Page 3 of

9.2 FEager Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

orc = (x=y— fo= fy)A
(m:Z%fw:fz)/\
(y:Z%fy:fz)
Gpur = fa=[fy V (2=yAz#[f)
YE = @PBEUF N\YFC

9.2.4 Given the formula
vpur = [f(g(z))=fy) V (z=gy) Nz # [(2))

Apply the Ackermann reduction to compute an equisatisfiable formula in 7.

_I Solution !

vrc = (T=yY = gz =gy
(gxzy%fgz:fy)/\
(gm:Z_)fgm:fz)/\
(y:Z%fy:fz)
PEUF = fgx:fy \ (z:gy/\z#fz)

YE = @QEUF NQFC

9.2.5 Given the formula
epur = f(@,y)=f(y,2) V (2= f(y,2) A f(z,2) # fz,y))

Apply the Ackermann reduction to compute an equisatisfiable formula in 7g.

_I Solution !

YrCc = (w:yAy:Zﬁfxy:fyz)/\
(x=2zANy=2—= foy = foz)A
(y:x/\z:x%fyz:fmw)

PEUF = f»Ly = fyz \ (Z = f’yz A f.L.L 7& fzy)

YE = @QEUF NPFC

9.2.6 Perform the graph-based reduction to translate the following formula in 7g into an equi-
satisfiable formula in propositional logic.

pg = (a=bVa=d = (b=c A c#d)

Page 4 of

9.2 FEager Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

‘We choose:

o Triangle 1: a-b-c
o Triangle 2: a-c-d
Yrc ::(6(125 N ep=c — ea:c)/\
(€amb N €ame — €p=c)
(eb=c N Eame — €q—p)A
(€a=c Nee=q — Bazd)/\

(ea:c Neg=q — ec:d)/\
(ec:d A €a=d — ea:c)

@E = (ea:b V eg=d — (6b:c A jec:d)

Pprop = PTC A @E

9.2.7 Perform the graph-based reduction to translate the following formula in 7x into an equi-
satisfiable formula in propositional logic.

pp = (a=bVa=d = (b=cAc#eA e#d)

Page 5 of

9.2 FEager Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

‘We choose:

o Triangle 1: a-b-c
o Triangle 2: a-c-d
o Triangle 3: c-d-e
("2 el ::(6a:b N €p=c — ea:c)/\

(ea:b N€g=c — eb:c)/\
(eb:c A €a=c — ea:b)/\

(€a=c N €c=q — €a=d)\
(€a=c N €a=d =+ €c=a)
(€c=d N €a=d =+ €a=c)/
(€c=e N €e=d = €d=c)
(€c=e N €d=e =+ €c=a)\
(€c=d N €d=e — €c=c)

@E = (ea:b V eg=d — (eb:c N T€e=e A jee:d)

Pprop = PTC A @E

9.2.8 Given the formula

vrvr = f(z) =yAz =g(z)Va # f(x) Ng(x) = f(g(x))Vy # g(z) ANz = f(y) Ag(y) = f(9(x))

Apply the Ackermann reduction to compute an equisatisfiable formula in 7.

_I Solution !

PEUF = fﬂc:y/\x:gr\/w#fr/\gxzfgm\/y#gz/\x:fy/\gy:fgx

(T=y—=ge=9gy) N
(x—y%fz fy)
(=
(

Yrc =

y—91_>fy fo.)

YE =@QEUF NYFCc

9.2.9 Given the formula

ppur = fla,b) =z A f(z,y) # g(a) V f(m,n) = bV f(g(a),y) # a.

Page 6 of

9.2 FEager Encoding 9 SATISFIABILITY MODULO THEORIES

Apply the Ackermann reduction to compute an equisatisfiable formula in 7g.

Solution

There is no solution available for this question yet.

9.2.10 Perform the graph-based reduction to translate the following formula in 7z into an equi-
satisfiable formula in propositional logic.

aZbANb=cVe=d—=-(d£eVe=f)A-(f=ghafe)

_I Solution !

Yrc = ((ea:b A 6b:e) — ea:e) A
((eazb A ea:e) — eb:e) A
((ea:e A eb:e) — ea:b) A
((ep=ec N €cme) — €p=e) A
((eb:c A eb:e) — ec:e) A
((eb:e A ec:e) — eb:c) A
((ec:d A ed:e) — ec:e) A
((ec:d A ec:e) — ed:e) A
((ec:e A ed:e) — ec:d)

O = "€q=p N €p—c V €c=q = (T€g=c V €c—f) A T(€f=g A m€q=c)

Pprop = PTC A @E

9.2.11 In the following list tick all statements that conform to the eager encoding approach for
the implementation of SMT solver.

O Eager encoding is based on the interaction between a SAT solver and a so-called theory
solver.

O Eager encoding involves translating the original formula to an equisatisfiable boolean for-
mula in a single step.

Page 7 of

9.2 FEager Encoding 9 SATISFIABILITY MODULO THEORIES

[0 Eager encoding is based on the direct encoding of axioms.

[0 Eager encoding starts with no constraints at all and adds constraints only when needed.
9.2.12 Given the formula
epvr = fzy) =9(@) = [fl9(y),2) =z V-(9(z) = y)].

Apply the Ackermann reduction to compute an equisatisfiable formula in 7z.

Solution

There is no solution available for this question yet.

9.2.13 Given the formula
$PEUF = f(g(ﬂf),h(y)) =a V b:f(u7v) — k(a7b) :YL/\’U:]G(JZ,y)

Apply the Ackermann reduction to compute an equisatisfiable formula in 7z.

Solution

There is no solution available for this question yet.

9.2.14 When applying eager encoding to decide the satisfiability of a formula in Tgy g, explain
how reflexivity, symmetry and transitivity are handled within the graph-based reduction.

There is no solution available for this question yet.

9.2.15 Perform the graph-based reduction to translate the following formula in 7g into an equi-
satisfiable formula in propositional logic.

YEUF = TFYNY =92V =9gy = gy F2Vz=fo) N(fo=fy ANz # 2)

Solution

There is no solution available for this question yet.

9.2.16 Consider the following formula in Tgyp.

orvr = f@)=fy)Afly)=yV flgx) =f(fy) ANg(z) ==
V() # fly) Ny #9(f(y) N # g(x)

e Use Ackermann’s reduction to compute an equisatisfiable formula in 7g.

e Then perform the graph-based reduction on the outcome of Ackermann’s reduction to
construct an equisatisfiable propositional formula ¢p,op.

Solution

There is no solution available for this question yet.

Page 8 of

9.2 FEager Encoding 9 SATISFIABILITY MODULO THEORIES

9.2.17 Given the formula
fl@)=g@)Vvz=fly) = f(z) #9(y) Nz = 2.

Apply the Ackermann reduction to compute an equisatisfiable formula in 7.

Solution
There is no solution available for this question yet.

9.2.18 Given the formula

vpvr = f(z) =yAz =g(z)Va # f(x) Ng(x) = f(g(x))Vy # g(z) ANz = f(y) Ag(y) = f(9(x))

Apply the Ackermann reduction to compute an equisatisfiable formula in 7z.

Solution
There is no solution available for this question yet.

9.2.19 Given the formula

ppvr = z=fry)ANrFyoz=fo,y)V fy,2) # 2Ny # flo,y) Vy = f(z,2)

Apply the Ackermann reduction to compute an equisatisfiable formula in 7.

Solution
There is no solution available for this question yet.

9.2.20 Perform the graph-based reduction to translate the following formula in 7z into an equi-

satisfiable formula in propositional logic.

pp=x#yANy=cVe=d—-(d#£zVz=a)AN-(a=bAz # 2).

Solution
There is no solution available for this question yet.

9.2.21 Consider the following formula in Tgyp.

=y =2V @) =fy) = @=2Vflr)=2flz)=y)

YEUF

e Use Ackermann’s reduction to compute an equisatisfiable formula in 7Tg.
e Then perform the graph-based reduction on the outcome of Ackermann’s reduction to

construct an equisatisfiable propositional formula ¢p,op.

Solution
There is no solution available for this question yet.

Page 9 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

9.3 Lazy Encoding

9.3.1 Give the definition of the propsitional skeleton of a formula ¢ in a given theory 7. Give
an example for a formula ¢ in T;74 and its corresponding propositional skeleton skel(¢y).

_I Solution !

The propositional skeleton skel(¢) of a formula ¢ is obtained by replacing each occurance
of a T-literal with a propositional variable.
An example for a formula ¢ in Tpra:

p=(x>y)V(r>z2),
and the corresponding skeleton skel():
eV €2,

where ey =x >y and es =2 > 2.

9.3.2 Explain the concept of lazy encoding to decide satisfiability of formulas in a first-order
theory.

_I Solution !

The propositional skeleton of ¢ is given to a SAT solver. If a satisfying assignment is
found, it is checked by a theory solver. If the assignment is consistent with the theory,
@ is T-satisfiable. Otherwise, a blocking clause is generated and the SAT solver searches
for a new assignment. This is repeated until either a T -consistent assignment is found,
or the SAT solver cannot find any more assignments.

See figure in lecture notes on page 11.

9.3.3 Consider the following formula in the conjunctive fragment of Try p.

vpvr = w=fy) A NrFyAyFuly=flu)AzF# flu)A
w=vhv=zAv=fl) Ao F(z) A () £ (2)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

_I Solution !

{z, f(W)} Ay, f(w)} {u, v} {v, 23 {w, f(y)} {F (@)1 {F ()}
{z, fW} Ay, f(w)} A{u, v, 2,0, f(y), {F (@)}, {f(2)}}
2)

{z, f(y), w0, 2,0} {y, f(w)} {f(0)}, {f(2)}

()
{z, f(y), w0, 2,0} {y, f(W)} {f(2), f(2)}
(v)

{z. f(),u,v, 2,0} {y, (W)}, {f(2), £(2)}

Checking the disequality f(x) # f(z) leads to the result that the assignment is UNSAT,
since f(x) and f(z) are in the same congruence class.

9.3.4 In the following list tick all statements that conform to the lazy encoding approach for the
implementation of SMT solver.

O Lazy encoding is based on the interaction between a SAT solver and a so-called theory
solver.

Page 10 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

O Lazy encoding involves translating the original formula to an equisatisfiable Boolean for-
mula in a single step.

O Lazy encoding is based on the direct encoding of axioms.
0 Lazy encoding starts with no constraints at all and adds constraints only when needed.
9.3.5 To decide SMT formulas, the lazy approach uses a theory solver in combination with a

SAT solver. Explain what a theory solver is. Explain what the inputs and outputs of a theory
solver are and how it is used within the lazy encoding approach.

Solution

There is no solution available for this question yet.

9.3.6 In the following list, mark all items that are true for an eager encoding procedure for Ty g
with E, mark all items that are true for a lazy encoding procedure with L, and mark all items
which neither belong to an eager nor a lazy encoding procedure with N.

|:| Only one call to a propositional SAT solver is required.

|:| A propositional formula that is equisatisfiable to the original theory formula is constructed
before calling any solver.

I:l A propositional SAT solver and a theory solver for the conjunctive fragment of the theory
interact with each other.

|:| For a theory-inconsistent assignment of literals, a blocking clause is created.
9.3.7 Consider the following formula in the conjunctive fragment of Try r.
ppur = r=yAy=[fyYAy# f@)Nz=fE)Nf(Z)=fle)ANz=fy)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution

There is no solution available for this question yet.

9.3.8 What does the congruence closure algorithm compute? State the inputs and output of the
algorithm.

In the context of deciding satisfiability of formulas in Tgyp, what is the congruence closure
algorithm used for?

Solution

There is no solution available for this question yet.

9.3.9 Consider the following formula in the conjunctive fragment of Tpyp.

ppur = fla)=cNfle) # f(@)Ab=flc)ha# fl)Ae=dNbFdNa=c

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution

There is no solution available for this question yet.

Page 11 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

9.3.10 Consider the following formula in the conjunctive fragment of Ty p.
ppur = a=bAcEdAfla)=cAfb)# f(e)Afla) = f(d)Af(b) =cAf(d) = f(c)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.11 Consider the following formula in the conjunctive fragment of Ty r.

fb)y=anc#dN fle)=bAd# f(b) A fla) = f(e) A
b#£fb)ha#eNfla)=eNa=cA f(b)#£end= f(c)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.12 Consider the following formula in the conjunctive fragment of Tgyp.
epur = f(b)=ahe=bArc=flc)nd# fle) A fla)=f(d)Na# f(c) Nd= f(a)
Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.13 Consider the following formula in the conjunctive fragment of Tgyp.

F(0) =k AL f(m) A # LA f(k) = m A £(0) = F(k) Ao kA
l# fM)ANfm)#kAm# f(m)Ao=nAf(m)=o0

YEUF =

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Solution
There is no solution available for this question yet.

9.3.14 Consider the following formula in the conjunctive fragment of Tpy p.

fb)=ane=brc=f(e)nd# f(e) Afla) = f(d) Aa# f(c) Ad = f(a)

YEUF =
Use the congruence closure algorithm to determine whether this formula is satisfiable.

_I Solution !

(d)},{d, f(a)}
J0) (d),d}
{f(b)a a, f(e)}a {67 b}7 {C7 f(c)}a {f(a 7f(d)7d}

Checking the disequalities d # f(e) and a # f(c) leads to the result that the assignment
is SAT, since neither d and f(e) nor a and f(c) are in the same congruence class.

{f(b)a a}’ {8, b}’ {Ca f(c)}> {f(e)}7 {f(a),
{f(b),a}.{e, b} {c, f(0)}, {f(e)};{f(a),

= =

Page 12 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

9.3.15 Consider the following formula in the conjunctive fragment of Ty r.

ppur = f0) =kAL# f(m) An#IAf(k) =mA f(0) = f(k) Ao # kA
L# f(n) A f(m) £k Am# f(m)Ao=nA f(m)=o

Use the congruence closure algorithm to determine whether this formula is satisfiable.

_I Solution !

{k: f@)} A1} Am, f(R)}, {f(F), f(0)}, {f(n)}, {n, 0}, {0, f(m)}
{k, f(R), f(0)}: AL} {m, F(R)}, {f(n)}, {n, o}, {0, f(m)}
I)34
)

T

{k, f(k), f(0)} AT}, {m, f(K)}, {f(n)}, {n, 0, f(m)}
{k,m, f(k), (o)}, {1}, {f ()}, {n, 0, f(m)}

{k,m, f(k), f(n), f(0)}, {1}, {n, 0, f(m)}
{k,m,n,0, f(K), f(m), f(n), f(0)}, {1}

Checking the disequalities 0 # k, f(m) # k, m # f(m) leads to the result that the
assignment is UNSAT, since o and k, f(m) and k, m and f(m) are in the same congruence
class.

9.3.16 Use the lazy encoding approach to check whether the formula ¢ in Tgpyp is satisfiable.

pi=(@=y)ANy=FW)AN(Y#f@)A(z=7Fz)Af2)=Fz)

Page 13 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

We start by computing skel(¢):
v ¢ & (x=1y)
caey=/r(y)
« e (y=f(2))
« 3o (2= [(2))
« a1 & (f(z) = f(z))
skel(¢) = eg Aep A—ea Aes Aey
Step T] 2 3 1 5 6
Decision Level 0 0 0 0 0 0
Assignment - ey | eg,e1 | eg,e1,es €0,€1,7€2, | €0, €1, €2,
€3 €3,€4
CL 1: € €0 v v v v v
Cl 2: €1 €1 €1 v v v v
Cl. 3: —es —ey | —es —eg v v v
Cl 4: €3 €3 €3 €3 €3 v v
ClL 5: €4 €4 €4 €4 €4 €4 v
BCP €0 €1 e €3 €4 -
PL N - - - - 5
Decision - - - - - SAT
The SAT solver has computed that skel(y) is satisfiable, we are therefore going to check
for consistency with the theory:
{zoyh v, f Az ()} {f(2), f(2)}
{fW) 2yt {f(2), f(2), 2}
The Tgy p-Solver returned SAT, therefore ¢ is satisfiable.

9.3.17 Use the lazy encoding approach to check whether the formula ¢ in Tgyr is satisfiable.

p=((f(a) =b)V(fa) =c)Vo(b=c) A((b=1c)V(a=0b)V(f(a)=b) A
(=(fla) =b) V(a=b) A ((b=c)V(a=1b)V~(fla)=b)) A
(=(f(a) =)V (b=c)) A (=(f(a) =) V(b=c)V—(a=Db)) A
((f(a) =b) v (f(a) = 0))

Page 14 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

We start by translating ¢ to ¢ = skel(¢) and assign the following variables to the theory
literals:

« e < (f(a) =0)
« e e (fla) =0
. €2<:>(b
(

)
b)

e e3 <= (a

@ = (6() Vv el Vv _|€2) A (62 V €3 V 60) A\ ("60 V 63) A (62 Vv —e3 V _|6()) A ("61 V 62) A ("61 Vv
eV ﬁeg) A\ (60 V 61)

Step 1 2 3 4
Decision Level 0 1 1 1
Assignment - —ep —eg,€e1 | —ep, e, e
Cl. 1: eg,e1, ey €p, €1, ey ey, e v v
Cl 2: €2, €3, € €9, €3, € €9, €3 €2, €3 v
Cl 3: —€p, €3 —€p, €3 v v v
Cl. 4: ey, —e3, ey | eg, mes, meg v v v
Cl. 5: —eq,es —eq, e —eq, e es v
Cl. 6: —e1, €2, €3 —e1, €2, €3 —e1, €2, €3 €2, €3 v
ClL 7: €p, €1 €0, €1 €1 v v
BCP - e1 es -
PL - - - -
Decision —eg - -

Mrngr = (@ £0). (@) = 0. (0=}

Check if the assignment is consistent with the theory:

{f(a),c}, {b, c}
{b.c, f(a)}
M, » 18 not consistent with the theory, because of: (f(a) # b)

= We need to add a blocking clause from M, .
BCg =gV eV —er

Step 5 6 7 8
Decision Level 0 1 1 1
Assignment - —eg —eg,e1 | e, e1, e
ClL 1: €0, €1, €2 €0, €1, € €1, €2 v v
ClL 2: eg,e3,€9 €2, €3, €0 €2,€3 €2,€3 €3
Cl. 3: —eg, e3 —eg, €3 v v v
Cl 4: €2, €3, 1€Q €2, €3, 7€ v v 4
ClL 5: —e1, €2 €1, € €1, €2 €9 {} X
ClL 6: —eq,eq, nes —€1, €2, €3 | T€1,€3, €3 | €3, €3 €3
Cl 7: eg, €1 €p, €1 e1 v v
Blocking Cl. 8: eg, me1,—es | eg, €1, nes —ey, —eg —es v
BCP - e1 —es _
PL - - - -
Decision —eg - - -

Page 15 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

Conflict in step 8

5. me1 Ves 8. ep V —ep Ve
€1 \Y €o 7 €o V €1
€0
Step 9 10 11 12
Decision Level 0 0 0 0
Assignment - eo ep,e3 | €ep,es,es
Cl. 1: eg, e1, e €o, €1, € v v v
Cl. 2: €2, €3, €0 €9, €3, €0 v v v
Cl 3: —ep, €3 —€Q, €3 €3 v v
Cl. 4: ey, ne3, e | ez, mes, meg eo, me3 e v
Cl. 5: —eq, ez —eq, e —eq, e —eq, e v
Cl 6: —e1, e2, €3 —e1, €2, €3 —e1, e2, €3 —e1, e2 v
ClL 7: €, €1 €0, €1 v v v
Cl. 8: eg, ey, e | eg,mer, mes v v v
Cl 9: e € v v v
BCP €o €3 €2 -
PL - - - -
Decision - - - SAT
MTEUF = (f(a) = b) A (b = C) A (a = b)

Check if the assignment is consistent with the theory:
{f(a),b}.{b,c},{a,b}
{a,b,¢c, f(a)}

M, - Is consistent with the theory,
= M., is a satisfying assignment and ¢ is SAT.

9.3.18 Use the lazy encoding approach to check whether the formula ¢ in Tgyp is satisfiable.

¢ =(=(fla) = f(®) v (f(a) =) V(e =b) A (=(fla) =) V(a=b) V=(f(c) = a)) A
((f(a) = f(b)) Vv =(f(a) =) A (=(f(a) = f(b)) V (a = b)) A
(m(a=0)V=(f(c) = a)) A(f(a) = f(D)) V (a=b)) A
(m(a=0b)V=(f(a) =)

Page 16 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

We start by translating ¢ to ¢ = skel(¢) and assign the following variables to the theory
literals:

f®))
)

. e & (fla) =
e 15 (fla)=c
v 2 (a=0b)

e e35 (f(e)=a)

@ = ("60\/61\/62)/\(_\61 \/62\/_‘63)/\(6()\/_\61)/\("60\/62)/\(_‘62\/_\63)/\(6(]\/62)/\("62\/"61)

Step 1 2 3 4 5
Decision Level 0 0 1 1 1
Assignment - —es —es, ey | —es, meg, Teq €3 ﬂf;" e
ClL 1: —€p, €1, €2 —€p, €1, €2 —€p, €1, €2 v v v
Cl. 2: —eq,eq,7€e3 | —ep,ea, mes v v v v
Cl. 3: eg, —ey ep, €1 ep, €1 —eq v v
Cl. 4: —€p, €2 —€gp, €2 T€Q, €2 v v v
Cl 5: —e2, €3 —€2, Te3 v v v v
Cl. 6: eg,e2 €p, €2 €p, €2 es es v
Cl. 7: —eq, —ey —ey, ey —eg, e | meg, ey v v
BCP - - —eqp €9 -
PL —es - - - -
Decision - —eg - SAT

MTpyr = (fla) # F(0)) A (f(a) #) A(a = 27) A (f(c) # a)

Check if the assignment is consistent with the theory:

{a, 0}, {f (@)}, {f(0)}, {c}, {f(0)}

M, - Is consistent with the theory,
= M, » is a satisfying assignment and ¢ is SAT.

9.3.19 Use the lazy encoding approach to check whether the formula ¢ in Tgyp is satisfiable.

p=(la=x)Via=y)V@=y)A((la=2)V(e=y)) A
(la=y)Vz=y)A((z=y)V(z=a) A
(Hz=y)V(b=2)A(~(z=a)V(b=2))

Page 17 of

9.3 Lazy Encoding

9 SATISFIABILITY MODULO THEORIES

_I Solution !

We start by translating ¢ to ¢ = skel(¢) and assign the following variables to the theory
literals:

@ = (6() \Y el V 62) A (_‘6() V 61) A (_‘61 V 62) A (62 \Y 63) A ("62 \Y 64) A ("63 \Y _|64)

Step 1 2 3 4 5 6
Decision Level 1 2 2 2 2
Assignment - —eq —ep,me1 | —eg, e, e 760, €1, €2, | €0, €1, €2
€4 €4, €3

ClL 1: €0, €1, €2 €0, €1, €2 €1, €2 €2 v v v
ClL 2: —ep, €1 —ep, €1 v v v v v
Cl. 3: —eq,es ey, e —eq, e v v v v
Cl 4: €2, €3 €2, €3 €9, €3 €9, €3 v v v
ClL 5: —eq,eq —eg, ey —eg, ey —eg, ey ey v v
Cl. 6: —eg3, ey | —ez, ey | —eg, ey | ez, ey —eg, ey —es v
BCP - - €2 €4 €3 -
PL - - - - - -
Decision —eg —eq - - - SAT

{z,y},{b, 2}, {a}

M, - Is consistent with the theory,
= M., is a satisfying assignment and ¢ is SAT.

Mpyr = (aF z) NaFy) ANz =y) AN(z#a) A (b= 2)
Check if the assignment is consistent with the theory:

9.3.20 Use the lazy encoding approach to check whether the formula ¢ in Tgyp is satisfiable.

e =((f(z) =)V (f(x)
(@) =y V(z=y)
=y V(f(z)=y

Page 18 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

We start by translating ¢ to ¢ = skel(¢) and assign the following variables to the theory

literals:

o eo = (f(z)=12)
o e (flx)=y)
2 (z=y)

o ez (2= f(z))

@ = (6() VeV 62) A\ (_‘6() V 61) A\ (_‘61 V 62) A\ (62 V 63) A\ ("62 V 61) A\ ("63 V _|61)
Step 1 2 3 1
Decision Level 0 1 2 2
Assignment -) T€p, €1 | T€p, €1, €2
Cl 1: eg,e1,e2 | eo,e1,62 €1, 62 €2 {3 X
Cl. 2: —eg, €1 —eg, e1 v v v
ClL 3: —ep, e2 €1, € —e1, €2 v v
Cl 4: e, e3 €2,€3 €2,€3 €2,€3 €3
Cl. 5: —eq, e —eg, €1 —eg, €1 —eg v
Cl. 6: —es, ey | —es, ey | —es, —ep v v
BCP - - —e2 -

PL - - - -
Decision —ep —e1 - -

Conflict in step 4

1.60\/61 V es 5. —es V ey
€0 V €1

Step 5 6 7 8
Decision Level 1 1 1 1
Assignment —eq —ep,e1 | —eg, e, e _‘eo’_‘ill; €2,
ClL 1: €0, €1, €2 €1,€2 v v v

Cl. 2: —eg, €1 v v v v

Cl. 3: —eq, ez —eq, e € v v

Cl 4: €2, €3 €2,€3 €2, €3 v v

Cl 5: —e2, €1 —e2, €1 v v v

CI. 6: —e3, ey —e3, 1e1 —e3 —e3 v

Cl 7: eg, e e v v v
BCP €1 € €3 -

PL - - - -
Decision - - -

Mrogr = T@ ZDAT@ =9 A =9 A (= £ 7(2))

Check if the assignment is consistent with the theory:

{F (@), y}, {2, y}, {2}
{z} {f (), z,y}

M., - is not consistent with the theory, because of: (f(z) # x)
= We need to add a blocking clause from M, :
BC :=¢gV —e1 V-es Ves

Page 19 of[?

9.3

Lazy Encoding

9 SATISFIABILITY MODULO THEORIES

Step 9 10 11 12 13
Decision Level 0 1 1 1
Assignment - —eq —eg,e1 | —ep, e, e 0 661-, €2;
—es
Cl 1: eg,e1,es €g, €1, € e1, € v v v
Cl 2: —€p, €1 —€Q, €1 v v v v
CL 3: €1, €2 —e1, € —e1, €y €9 v v
Cl 4: ey, e3 €2, €3 €2, €3 €2, €3 v v
Cl 5: —eq, e —eg, €1 —eg, €1 v v v
CL 6: —e3, me; e, ey —es, ey —es —es v
Cl 7: €0, €1 €0, €1 €1 v v v
CL 8: e, neq, neg, e3 e(]"_‘?’ﬂe% —ey,meg,e3 | Teg, €3 e3 {3 x
3
BCP - (] €9 —es -
PL - - - - -
Decision —eg - - N N
Conflict in step 13
7
—ep
8. €p V el vV €9 \Y €3 3. €7 \ €9
ep Ve Ves 6. —e3 V —eq
eg V —eqp T7.e9Veq
€0
Step 14 15 16 17 18
Decision Level 0 0 0 0
Assignment - eo ep,e1 | e, er, e €o; 627 €2;
—es
Cl 1: eg,e1,es €p, €1, € v v v v
Cl. 2: —€p, €1 —€Q, €1 €1 v v v
Cl. 3: €1, €2 —€1, €2 €1, €2 €9 v/ /
Cl. 4: €2, €3 €2, €3 €2, €3 €2, €3 v v
Cl 5: —eq, e —eg, €1 —eg, €1 v v v
Cl. 6: —es, —ey —es3, ey —e3, ey | —es —es v
Cl. 7: eg, e €, €1 v v v v
CL 8: ey, meq, —es, €3 607—\e€1,ﬂeg7 v v v v
23
Cl 9: e €o v v v v
BCP € €1 €2 —es -
PL - - - - -
Decision - - - - SAT
Mgy = (f(@) =) AN(f(2) =y) ANz =y) A (2 # f(2))

Check if the assignment is consistent with the theory:

{f(@),z}, {f(2), v}, {z, u}, {=}
{z}{f (@), 2,9}

M, - Is consistent with the theory,
= M, is a satisfying assignment and ¢ is SAT.

Page 20 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

9.3.21 Use the lazy encoding approach to check whether the formula ¢ in Tgyp is satisfiable.

Page 21 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

We start by translating ¢ to ¢ = skel(¢) and assign the following variables to the theory

literals:
e & (a=0b)
« a1 (a=f(a))
« 2 (b= f(a))
v e3& (d=a)

@ = (6() V €1 Vv 62) A (_‘6() Vv 61) A\ (_‘61 Vv 62) A (62 V 63) A\ ("62 V 61) A\ ("63 V _|61)

Step 1 2 3 1
Decision Level 0 1 2 2
Assignment - e —ep, €1 —€p, €1, e
Cl. 1: eg,eq1,e2 | eg,e1,€ e1, € e {} X
Cl. 2: —eg, €1 —eg, e1 v v v
ClL 3: —ep, e2 €1, € —e1, €2 v v
Cl 4: ep,e3 €2, €3 €2,€3 €2,€3 €3
Cl. 5: —eq, e —eg, €1 —eg, €1 —eg v
Cl. 6: —es, ey | —es, ey | —es, —ep v v
BCP - - —e2 -
PL - - - -
Decision —ep —e1 - -

Conflict in step 4

1.60\/61 V es 5. —es V ey
€0 V €1

Step 5 6 7 8
Decision Level 1 1 1 1
Assignment —eq —ep,e1 | —eg, e, e _‘eo’_‘ill; €2,
ClL 1: €0, €1, €2 €1,€2 v v v

Cl. 2: —eg, €1 v v v v

Cl. 3: —eq, ez —eq, e € v v

Cl 4: €2, €3 €2,€3 €2, €3 v v

Cl 5: —e2, €1 —e2, €1 v v v

CI. 6: —e3, ey —e3, 1e1 —e3 —e3 v

Cl 7: eg, e e v v v
BCP €1 € €3 -

PL - - - -
Decision -

Mroer =@Z D A= F)AG= @) A @£

Check if the assignment is consistent with the theory:

{a, f(a)}, {b, f(a)}, {d}
{d},{a,b, f(a)}
M, - is not consistent with the theory, because of: (a # b)

= We need to add a blocking clause from My, .. :
BC :=¢gV —e1 V-es Ves

Page 22 of[?

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES
Step 9 10 11 12 13
Decision Level 0 1 1 1
Assignment - —eq —eg,e1 | —eg, e1,e2 0 661-, €2;

—es
Cl 1: eg,e1,es €g, €1, € e1, € v v v
Cl 2: —€p, €1 —€Q, €1 v v v v
CL 3: €1, €2 —e1, € —e1, €y €9 v v
Cl 4: ey, e3 €2, €3 €2, €3 €2, €3 v v
Cl 5: —eq, e —eg, €1 —eg, €1 v v v
Cl. 6: —es, —ey —es3, ey —es, ey —es —es v
CL 7: €0, €1 €0, €1 €1 v v v
CL 8: e, neq, neg, e3 e(]"_‘?’ﬂe% —ey,meg,e3 | Teg, €3 e3 {3 x
3
BCP - (] €9 —es -
PL - - - - -
Decision —eg - - - -
Conflict in step 13
7
—ep
8. €p V el vV €9 \Y €3 3. €7 \ €9
ep Ve Ves 6. —e3 V —eq
eg V —eqp T7.e9Veq
€0
Step 14 15 16 17 18
Decision Level 0 0 0 0
Assignment - eo ep,e1 | e, er, e €o; 627 €2;
—es
Cl 1: eg,e1,es €p, €1, € v v v v
Cl 2: —€p, €1 —€Q, €1 €1 v v v
ClL 3: €1, €2 —€1, €2 €1, €2 €2 v v
Cl. 4: €2, €3 €2, €3 €2, €3 €2, €3 v v
Cl 5: —eq, e —eg, €1 —eg, €1 v v v
Cl. 6: —es, —ey —es3, ey —e3, ey | —es —es v
Cl. 7: eg, e €, €1 v v v v
CL 8: ey, meq, —es, €3 607—\e€1,ﬂeg7 v v v v
23
Cl 9: e €o v v v v
BCP € €1 €2 —es -
PL - - - - -
Decision - - - - SAT
My = (a=b)A(a= f(a)) A (b= f(a)) A(d# a)

Check if the assignment is consistent with the theory:

{a,b},{a, f(a)}, {b, f(a)}, {d}
{d},{a,b, f(a)}

M, - Is consistent with the theory,
= M, is a satisfying assignment and ¢ is SAT.

Page 23 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

9.3.22 Use the lazy encoding approach to check whether the formula ¢ in Tgyp is satisfiable.

A
A

((a = f(a)) v —(c=10))

_I Solution !

b)V (a = f(a))) A((f(a) =b)V (c=b)V (f(a) = ¢)
=)V (fla) =b)V(fla) =) A(=(a=0)V—(

literals:
o ¢g< (a=0b)
e 1< (a= f(a))

o e2 & (f(a) =0b)

We start by translating ¢ to ¢ = skel(¢) and assign the following variables to the theory

Step 1 2 3 4 5 6
Decision Level 0 0 0 0 1 1

. €5, €2, T1€: €5, €2, €3,
Assignment - es es, €2 €5, €2, €3 1720 08 172 08

—€o €0, €1

Cl 1: eg,e1 €0, €1 €0, €1 €0, €1 €0, €1 e1 v
Cl. 2: es,e3,¢e4 €o, €3, €4 €2,€3,€4 v v v v
Cl. 3: e5,es, ey | e5,7€, ey v v v v v
Cl. 4: —€p, €1 —€p, €1 —€p, e —€p, €1 —€p, €1 v v
Cl 5: eq,—e3 e1, -e3 e1,me3 | e1,—eg v v v
BCP - - - - €1 -
PL €5 € —es3 - - -
Decision - - - —eg - -

MTpyr = (a7 b) Ala = f(a)) A(f(a) =b) A(c 7 b) A(f(b)

Check if the assignment is consistent with the theory:

{a, f(a)},{f(a), b}, {f (D), ¢}
{f(®), ¢}, {a,b, f(a)}
M, » 18 not consistent with the theory, because of: (a # b)

= We need to add a blocking clause from M, :
BC := —e5 V ey Ves Ve Ve

:C)

Page 24 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

Step 7 8 9 10 11
Decision Level 0 1 1 1 1
Assignment - —eg —eg, €1 —eq, €1, €3 T, €1, €3,
ey
ClL 1: €p, €1 €p, €1 €1 v v v
CL 2: eg,e3,¢e4 €2,€3,€4 €2,€3, €4 €2,€3, €4 v v
CL 3: e5, ez, neq €5, €2, €4 | €5,7€2,7€4 | €5,7€3, ey | €5, ea, Tey 4
Cl. 4: —ep, ey —€p, €1 v v v v
Cl. 5: ey, —es ey, es ey, €3 v v v
Cl 6: —es, 1€g, €3, €p, €1 €5, €2, €3, €5, 2, 83, —€j, €2, €3 / /
€p, €1 €1
BCP - €1 - - -
PL - - €3 —eg -
Decision —eg - - - SAT

MTpyr = (a7 b) A(a= f(a)) A (fa) #b) A(c=1b)
Check if the assignment is consistent with the theory:

{a, f(a)}, {c, b}

M, i consistent with the theory,
= M., is a satisfying assignment and ¢ is SAT.

9.3.23 Use the lazy encoding approach to check whether the formula ¢ in Tgyp is satisfiable.

Page 25 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

_I Solution !

We start by translating ¢ to ¢ = skel(¢) and assign the following variables to the theory

literals:

« e (y=f(z))
cae(y=r)
o 2 (f(z)=2)
(f(y) = x)
()
(

e es e (fly)

'€3<:>f

X

<

z
v 58 (z=1)

@ = (—egV-er)AlegVer)AleaVesV-eq)Aer V—es) AesVesVes)AlegVes)

Step 1 2 3 4 5 6
Decision Level 0 0 0 1

Assignment - e €, €3 €2, €3, € €2,€3,7€0, | €2, €3, €0

€1 €1,€5

ClL 1: —€p, Te1 —ep, €1 —€p, Te1 —€p, €1 v v v

Cl 2: €p, €1 €p, €1 €p, €1 €0, €1 €1 v v

Cl. 3: es,e3,7ey | €2,e3, 7€y v v v v v

Cl. 4: €1, €5 €1, €5 €1, €5 €1, €5 €1, €5 v v

Cl 5: €3, €5,€4 €3,€5,€4 €3,€5,€4 v v v v

CI. 6: €p, €5 €0, €5 €p, €5 €0, €5 €5 €5 v
BCP - - - €1 €5 -

PL €2 €3 - - - -
Decision - - —eq - - -

MTpue = # [@) Ay =[y) A(f(x) =2) A(fly) = 2) A (2= 2)

Check if the assignment is consistent with the theory:

{v, W)} Af(@), 2} {f(y), z}. {7, 2}
{f(@), f(y), =y, 2}
M7, » 18 not consistent with the theory, because of: (y # f(x))

= We need to add a blocking clause from My, . :
B(C = —eg V —e3 Veg Ve V—es

Page 26 of

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES
Step 7 8 9 10 11 12
Decision Level 0 1 1 1 1 1
Assignment - —eq —eq, €1 —ep, €1, €5 T, €1, €5, °0: €1, €5,

2 [€4, 7€2
Cl 1: —€p, €1 —€p, €1 v v v v v
ClL 2: €0, €1 €p, €1 €1 v v v v
ClL 3: €9, €3, €y €92,€3, €4 €9, €3, €y €92, €3, €4 €92, €3, €y v v
Cl 4: ey, —es ey, ey e1, ey v v v v
Cl 5: e3,e5,¢e4 es3,€es, €4 €3, es5, €4 €3, es, €4 v v v
Cl. 6: €0, €5 €, €5 €5 €5 v v v
ClL 7: —eq, —es, €9, m€1, €5 T€2,7€s, €0, | €2, €3, ML, —eg, €3, 5 | Teg, e —eg2, Te3 v
€1, €5 €5
BCP - €1 €5 - - -
PL - - - ey e -
Decision —eq - - SAT

MTEUF = (y # f(l)) A (y = f(y)) A (f($)

Check if the assignment is consistent with the theory:

NGO DINCED

{v: F(W)}:{z 2}, {f(2)}

M, - is consistent with the theory,
= M, is a satisfying assignment and ¢ is SAT.

Page 27 of

	Satisfiability Modulo Theories
	Definitions and Notations
	Eager Encoding
	Lazy Encoding

