
Questionnaire “Logic and Computability”
Summer Term 2023

Contents
9 Satisfiability Modulo Theories 1

9.1 Definitions and Notations . 1
9.2 Eager Encoding . 1
9.3 Lazy Encoding . 4

9 Satisfiability Modulo Theories
9.1 Definitions and Notations

9.1.1 Give the definition of a theory of formulas in first-order logic.

9.1.2 Explain the concept of a theory in first-order logic using the theory of Linear Integer
Arithmetic TLIA as example.

9.1.3 Explain the problem of satisfiability modulo theories. As part of your explanation, explain
what a theory is and explain the meaning of theory-satisfiability.

9.1.4 Give the definitions of T -terms, T -atoms and T -literals for SMT formulas.

9.1.5 What is the difference between a model of an SMT formula and a model of a predicate
logic formula without a theory?

9.1.6 Given the signature ΣEUF := {a, b, c, . . .} ∪ {f, g, h, . . .} ∪ {=, P,Q,R, . . .}, of the Theory
of Equality and Uninterpreted Functions TEUF . State the axioms AEUF of TEUF .

9.1.7 Explain the concepts of eager encoding and lazy encoding in the context of solving formulas
in SMT.

9.1.8 In the following list tick all formulas that are axioms of the theory of equalities and unin-
terpreted functions TEUF .

� ∀x (x = x)

� ∀x ∀y (x = y ∨ y = x)

� ∀x ∀y ∀z (x = y ∧ y = z → x = z)

� ∀x ∀y (f(x) = f(y) → x = y)

9.1.9 A first-order theory T is defined by a signature Σ and a set of axioms A. Consider the
Theory of Equality TE . Give its signature ΣE and its axioms AE .

9.1.10 What is an uninterpreted function? What is the difference between an uninterpreted and
an interpreted function? What are the properties of an uninterpreted function?

9.1.11 Considering formulas ϕ and ψ regarding a theory T .

• When is a formula ϕ T -valid?
• When is a formula ϕ T -satisfiable?
• When does ϕ T -entail ψ?

9.2 Eager Encoding
9.2.1 Explain the concept of eager encoding to solve formulas in in SMT. State the 3 main steps
that are performed in algorithms based on eager encoding.

9.2.2 Explain the specific translations used in eager encoding to decide formulas in the theory
of equality and uninterpreted functions.

9.2.3 Given the formula

ϕEUF := f(x) = f(y) ∨ (z = y ∧ z 6= f(z))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2 Eager Encoding 9 SATISFIABILITY MODULO THEORIES

9.2.4 Given the formula

ϕEUF := f(g(x)) = f(y) ∨ (z = g(y) ∧ z 6= f(z))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.5 Given the formula

ϕEUF := f(x, y) = f(y, z) ∨ (z = f(y, z) ∧ f(x, x) 6= f(x, y))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.6 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕE := (a = b ∨ a = d) → (b = c ∧ c 6= d)

9.2.7 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕE := (a = b ∨ a = d) → (b = c ∧ c 6= e ∧ e 6= d)

9.2.8 Given the formula

ϕEUF := f(x) = y∧x = g(x)∨x 6= f(x)∧g(x) = f(g(x))∨y 6= g(x)∧x = f(y)∧g(y) = f(g(x))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.9 Given the formula

ϕEUF := f(a, b) = x ∧ f(x, y) 6= g(a) ∨ f(m,n) = b ∨ f(g(a), y) 6= a

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.10 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

a 6= b ∧ b = c ∨ c = d→ ¬(d 6= e ∨ e = f) ∧ ¬(f = g ∧ a 6= e)

9.2.11 In the following list tick all statements that conform to the eager encoding approach for
the implementation of SMT solver.

� Eager encoding is based on the interaction between a SAT solver and a so-called theory
solver.

� Eager encoding involves translating the original formula to an equisatisfiable boolean for-
mula in a single step.

� Eager encoding is based on the direct encoding of axioms.
� Eager encoding starts with no constraints at all and adds constraints only when needed.

9.2.12 Given the formula

ϕEUF := f(x, y) = g(x) → [f(g(y), z) = x ∨ ¬(g(z) = y)] .

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

Page 2 of 5

9.2 Eager Encoding 9 SATISFIABILITY MODULO THEORIES

9.2.13 Given the formula

ϕEUF := f(g(x), h(y)) = a ∨ b = f(u, v) → k(a, b) = u ∧ v = k(x, y)

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.14 When applying eager encoding to decide the satisfiability of a formula in TEUF , explain
how reflexivity, symmetry and transitivity are handled within the graph-based reduction.

9.2.15 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕEUF := x 6= y ∧ y = gx ∨ gx = gy → ¬(gy 6= z ∨ z = fx) ∧ ¬(fx = fy ∧ x 6= z)

9.2.16 Consider the following formula in TEUF .

ϕEUF := f(x) = f(y) ∧ f(y) = y ∨ f(g(x)) = f(f(y)) ∧ g(x) = x

∨f(x) 6= f(y) ∧ y 6= g(f(y)) ∧ x 6= g(x)

• Use Ackermann’s reduction to compute an equisatisfiable formula in TE .
• Then perform the graph-based reduction on the outcome of Ackermann’s reduction to

construct an equisatisfiable propositional formula ϕprop.

9.2.17 Given the formula

f(x) = g(x) ∨ z = f(y) → f(z) 6= g(y) ∧ x = z

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.18 Given the formula

ϕEUF := f(x) = y∧x = g(x)∨x 6= f(x)∧g(x) = f(g(x))∨y 6= g(x)∧x = f(y)∧g(y) = f(g(x))

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.19 Given the formula

ϕEUF := x = f(x, y) ∧ x 6= y ↔ z = f(x, y) ∨ f(y, z) 6= z ∧ y 6= f(x, y) ∨ y = f(x, z)

Apply the Ackermann reduction to compute an equisatisfiable formula in TE .

9.2.20 Perform the graph-based reduction to translate the following formula in TE into an equi-
satisfiable formula in propositional logic.

ϕE := x 6= y ∧ y = c ∨ c = d→ ¬(d 6= z ∨ z = a) ∧ ¬(a = b ∧ x 6= z).

9.2.21 Consider the following formula in TEUF .

ϕEUF := (y = z ∨ f(x) = f(y)) → (x = z ∨ f(x) = x ∧ f(x) = y)

• Use Ackermann’s reduction to compute an equisatisfiable formula in TE .
• Then perform the graph-based reduction on the outcome of Ackermann’s reduction to

construct an equisatisfiable propositional formula ϕprop.

Page 3 of 5

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

9.3 Lazy Encoding
9.3.1 Give the definition of the propsitional skeleton of a formula ϕ in a given theory T . Give
an example for a formula ϕ in TLIA and its corresponding propositional skeleton skel(ϕ).

9.3.2 Explain the concept of lazy encoding to decide satisfiability of formulas in a first-order
theory.

9.3.3 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := x = f(y) ∧ x 6= y ∧ y 6= u ∧ y = f(u) ∧ z 6= f(u)∧
u = v ∧ v = z ∧ v = f(y) ∧ v 6= f(z) ∧ f(x) 6= f(z)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.4 In the following list tick all statements that conform to the lazy encoding approach for the
implementation of SMT solver.

� Lazy encoding is based on the interaction between a SAT solver and a so-called theory
solver.

� Lazy encoding involves translating the original formula to an equisatisfiable Boolean for-
mula in a single step.

� Lazy encoding is based on the direct encoding of axioms.
� Lazy encoding starts with no constraints at all and adds constraints only when needed.

9.3.5 To decide SMT formulas, the lazy approach uses a theory solver in combination with a
SAT solver. Explain what a theory solver is. Explain what the inputs and outputs of a theory
solver are and how it is used within the lazy encoding approach.

9.3.6 In the following list, mark all items that are true for an eager encoding procedure for TUE

with E, mark all items that are true for a lazy encoding procedure with L, and mark all items
which neither belong to an eager nor a lazy encoding procedure with N.

� Only one call to a propositional SAT solver is required.

� A propositional formula that is equisatisfiable to the original theory formula is constructed
before calling any solver.

� A propositional SAT solver and a theory solver for the conjunctive fragment of the theory
interact with each other.

� For a theory-inconsistent assignment of literals, a blocking clause is created.

9.3.7 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := x = y ∧ y = f(y) ∧ y 6= f(x) ∧ z = f(z) ∧ f(z) = f(x) ∧ z = f(y)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.8 What does the congruence closure algorithm compute? State the inputs and output of the
algorithm.
In the context of deciding satisfiability of formulas in TEUF , what is the congruence closure
algorithm used for?

9.3.9 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(a) = c ∧ f(c) 6= f(d) ∧ b = f(c) ∧ a 6= f(c) ∧ c = d ∧ b 6= d ∧ a = c

Use the congruence closure algorithm to determine whether this formula is satisfiable.

Page 4 of 5

9.3 Lazy Encoding 9 SATISFIABILITY MODULO THEORIES

9.3.10 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := a = b ∧ c 6= d ∧ f(a) = c ∧ f(b) 6= f(c) ∧ f(a) = f(d) ∧ f(b) = c ∧ f(d) = f(c)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.11 Consider the following formula in the conjunctive fragment of TEUF .

f(b) = a ∧ c 6= d ∧ f(e) = b ∧ d 6= f(b) ∧ f(a) = f(e) ∧
b 6= f(b) ∧ a 6= e ∧ f(a) = e ∧ a = c ∧ f(b) 6= e ∧ d = f(c)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.12 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(b) = a ∧ e = b ∧ c = f(c) ∧ d 6= f(e) ∧ f(a) = f(d) ∧ a 6= f(c) ∧ d = f(a)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.13 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(o) = k ∧ l 6= f(m) ∧ n 6= l ∧ f(k) = m ∧ f(o) = f(k) ∧ o 6= k∧
l 6= f(n) ∧ f(m) 6= k ∧m 6= f(m) ∧ o = n ∧ f(m) = o

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.14 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(b) = a ∧ e = b ∧ c = f(c) ∧ d 6= f(e) ∧ f(a) = f(d) ∧ a 6= f(c) ∧ d = f(a)

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.15 Consider the following formula in the conjunctive fragment of TEUF .

ϕEUF := f(o) = k ∧ l 6= f(m) ∧ n 6= l ∧ f(k) = m ∧ f(o) = f(k) ∧ o 6= k∧
l 6= f(n) ∧ f(m) 6= k ∧m 6= f(m) ∧ o = n ∧ f(m) = o

Use the congruence closure algorithm to determine whether this formula is satisfiable.

9.3.16 Use the lazy encoding approach to check whether the formula ϕ in TEUF is satisfiable.

ϕ := (x = y) ∧ (y = f(y)) ∧ (y 6= f(x)) ∧ (z = f(z)) ∧ (f(z) = f(x))

9.3.17 Use the lazy encoding approach to check whether the formula ϕ in TEUF is satisfiable.

ϕ := (g(a) = c) ∧
(
(f(g(a)) 6= f(c)) ∨ (g(a) = d))

)
∧ (c 6= d)

Page 5 of 5

	Satisfiability Modulo Theories
	Definitions and Notations
	Eager Encoding
	Lazy Encoding

