Questionnaire "Logic and Computability"
 Summer Term 2023

Contents

4 Natural Deduction for Propositional Logic 1
4.1 Rules for Natural Deduction 1
4.2 Soundness and Completeness of Natural Deduction 4

4 Natural Deduction for Propositional Logic

For each of the following sequents, either provide a natural deduction proof, or a counter-example that proves the sequent invalid.

For proofs, clearly indicate which rule, and what assumptions/premises/ intermediate results you are using in each step. Also clearly indicate the scope of any boxes you use.

For counterexamples, give a complete model. Show that the model satisfies the premise(s) of the sequent in question, but does not satisfy the respective conclusion. For each of the following sequents, either provide a natural deduction proof, or a counter-example that proves the sequent invalid.

4.1 Rules for Natural Deduction

4.1.1 Give the definition of a sequent. Give an example of a sequent and name the parts the sequent consists of.
4.1.2 Look at the following statements and tick them if they are true.In a sequent, premises entail a conclusion.In a sequent, conclusions entail a premise.A sequent is valid, independent on whether a proof can be found.A sequent is valid, if a proof for it can be found.
4.1.3 Explain the concept of boxes in deduction rules and why they are needed. What does it mean if you make an assumption within a box? Where is this assumption valid?
4.1.4 Explain the $O R$-elimination $(\vee-e)$ rule of the natural deduction calculus. In particular, why does it rule require two boxes?
4.1.5 Why are there two rules for the \vee-introduction rule. Explain, why you are able to connect any formula to a certain formula φ using the connective \vee.
4.1.6 $\neg \neg \neg p \wedge q, \neg \neg r \vdash r \wedge \neg p \wedge \neg \neg q$
4.1.7 $p, p \rightarrow q, p \rightarrow(q \rightarrow r) \vdash r$
4.1.8 $\neg p \rightarrow q, \neg \neg \neg q \wedge r \vdash p \wedge \neg \neg \neg q$
4.1.9 $\neg p \rightarrow(q \rightarrow r), \neg p, \neg r \vdash \neg q$
4.1.10 $p \rightarrow q, q \rightarrow r \vdash p \rightarrow r$
4.1.11 $p \rightarrow(q \wedge r), q \rightarrow s \vdash p \rightarrow(s \wedge r)$
4.1.12 $p \wedge q, r \rightarrow s \vdash(p \vee(r \rightarrow s)) \wedge(q \vee((t \vee r) \rightarrow u))$
4.1.13 $q \rightarrow r \vdash(p \vee q) \rightarrow(p \vee r)$
4.1.14 $p \rightarrow \neg q, q \vdash \neg p$
4.1.15 Solve this task without using the Modus Tollens.

$$
\neg p \rightarrow \neg q, q \vdash p
$$

4.1.16 $\vdash((p \rightarrow q) \rightarrow p) \rightarrow p$
4.1.17 $\neg q \vee \neg p \vdash \neg(q \wedge p)$
4.1.18 $p \vee \neg \neg q, \neg p \wedge \neg q \vdash s \vee \neg t$
4.1.19 $p \rightarrow q \vdash \neg p \vee q$
4.1.20 $\vdash \neg(p \wedge q) \vee p$
4.1.21 $\neg \neg k \rightarrow(l \vee m), \neg \neg \neg l \rightarrow m \vdash \neg k \vee(l \vee \neg \neg m)$
4.1.22 $\neg(a \wedge b) \vee \neg c \vdash \neg(a \wedge b) \rightarrow c \vee a$
4.1.23 $(s \vee \neg u) \rightarrow t \vdash(\neg s \wedge u) \vee t$
4.1.24 Provide a natural deduction proof for the following sequent without using the Modus Tollens rule:

$$
\varphi \rightarrow \psi, \neg \psi \vdash \neg \varphi
$$

4.1.25 $\neg \neg p \wedge \neg \neg q, r \wedge s \vdash(p \wedge r) \wedge \neg \neg s$
4.1.26 $(\neg p \rightarrow q) \wedge(q \rightarrow r), \neg r \vdash \neg \neg \neg r \wedge \neg p$
4.1.27 $(p \rightarrow q) \rightarrow r \vdash \neg r \wedge \neg s \rightarrow \neg(p \rightarrow q)$
4.1.28 $p \rightarrow q \vdash(r \rightarrow p) \rightarrow(r \rightarrow q)$
4.1.29 $p \rightarrow q, p \wedge(r \vee q) \vdash(q \rightarrow p) \rightarrow((s \wedge t) \vee q) \wedge(r \vee q)$
4.1.30 $p \vee q, \neg p \vee r \vdash q \vee r$
4.1.31 $p \rightarrow q, p \wedge r \vee q \vdash(q \rightarrow p) \rightarrow((s \wedge t) \vee q) \wedge(r \vee q)$
4.1.32 $p \vee q, p \rightarrow r, \neg s \rightarrow \neg q \vdash r \vee s$
4.1.33 Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction. If the sequent is not valid, provide a counter example.

If I press the button, the window opens.
The window is not open.
Therefore, I didn't press the button.

$$
\begin{aligned}
& \text { 4.1.34 } \neg q \vee p \vdash q \rightarrow(p \vee r) \\
& \text { 4.1.35 } p \rightarrow(q \vee r), \neg q \wedge \neg r \vdash \neg p \\
& \text { 4.1.36 } \neg(q \vee p) \vdash \neg q \wedge p \\
& \text { 4.1.37 } \vdash(p \rightarrow q) \vee(q \rightarrow r) \\
& \text { 4.1.38 }(p \rightarrow q) \wedge(q \rightarrow p) \vdash(p \wedge q) \vee(\neg p \wedge \neg q)
\end{aligned}
$$

4.1.39 Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction. If the sequent is not valid, provide a counter example.

If I press the button, the window opens.
I pressed the button.
Therefore, the window is open.
4.1.40 $(p \rightarrow(q \rightarrow r)) \wedge(q \rightarrow(r \rightarrow s)) \vdash p \rightarrow(q \rightarrow s)$
4.1.41 $\vdash(p \rightarrow(q \wedge r)) \rightarrow((p \rightarrow q) \wedge(p \rightarrow r))$
4.1.42 $(p \rightarrow(q \rightarrow r)) \vee(q \rightarrow(r \rightarrow s)) \vdash p \rightarrow(q \rightarrow s)$
4.1.43 $\vdash(p \wedge q) \rightarrow \neg(\neg p \vee \neg q)$
4.1.44 $\neg(p \wedge q) \vee \neg(r \wedge s) \vdash(\neg p \wedge \neg r) \vee(\neg q \wedge \neg s)$
4.1.45 $p \rightarrow q \wedge \neg r, r \rightarrow s \vee \neg q \vdash p \rightarrow \neg s$
4.1.46 $p \rightarrow q \vee r, \neg q \vdash p \rightarrow r$
4.1.47 $\neg(p \wedge q) \rightarrow r, p \rightarrow \neg q \vdash r$
4.1.48 $(p \wedge q) \vee(p \wedge r) \vdash p \wedge(q \vee r)$
4.1.49 $p \wedge q \rightarrow r, p \rightarrow \neg q \vdash \neg r$
4.1.50 $\vdash(p \rightarrow q) \vee \neg q$
4.1.51 $\vdash(p \rightarrow q) \wedge \neg q$
4.1.52 $(p \rightarrow q) \wedge(q \rightarrow r), \neg r \vee q \vdash \neg p \vee r$
4.1.53 $(p \wedge q) \rightarrow(p \wedge r), q \vdash \neg p \vee r$
4.1.54 $p \rightarrow q, q \rightarrow r, \neg(p \wedge r) \vdash q \rightarrow p$
4.1.55 $(p \wedge q) \rightarrow(r \vee s),(r \wedge p \wedge q) \vdash(q \rightarrow r) \wedge(s \rightarrow q)$
4.1.56 $(p \wedge r) \vdash(q \rightarrow p) \wedge(s \rightarrow r)$
4.1.57 $p \rightarrow(q \vee r), q \rightarrow s \vdash \neg(p \rightarrow(q \wedge s))$
4.1.58 $\neg(p \vee \neg q) \vdash p$
4.1.59 $p \rightarrow q \vdash((p \vee q) \rightarrow p) \wedge(p \rightarrow(p \vee q))$
4.1.60 $p \vee q, \neg q \vee r \vdash r$
4.1.61 $(p \wedge q) \rightarrow(\neg r \wedge \neg s), \neg r \wedge \neg s \vdash p$
4.1.62 (a) If I am ill, I go to the doctor.

I am ill.
Therefore, I go to the doctor.
(b) If I am ill, I go to the doctor.

I go to the doctor.
Therefore, I am ill.
(c) (Solve without using the Modus Tollens)

If I am ill, I go to the doctor.
I did not go to the doctor.
Therefore, I am not ill.
4.1.63 (a) $(p \wedge q) \wedge \neg r \vdash q \vee r$
(b) $(p \vee q) \wedge \neg r \vdash q \wedge r$
4.1.64 $p \wedge q, q \rightarrow \neg \neg r \vdash p \wedge r$
4.1.65 $(p \wedge q) \vdash((\neg(p \wedge q)) \rightarrow r) \vee((q \rightarrow s) \wedge t)$
4.1.66 $\neg t,(p \wedge r) \rightarrow t \vdash(r \rightarrow s) \wedge(p \rightarrow q)$
4.1.67 $p \rightarrow q, q \rightarrow r \vdash r$.
4.1.68 Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction. If the sequent is not valid, provide a counter example.

If I press the button, the window opens.
The window is open.
Therefore, I pressed the button.

4.2 Soundness and Completeness of Natural Deduction

4.2.1 "Natural deduction for propositional logic is sound and complete." Explain in your own words what this means.
4.2.2 How can you show that a sequent is not valid? Is this a consequence of soundness or completeness. Explain your answer.
4.2.3 Explain what it means that natural deduction for propositional logic is sound. What is the difference to completeness?
4.2.4 Look at the following statements and tick them if they are true.Any sequent that is a correct semantic entailment can be proven.Any sequent that can be proven is a correct semantic entailment.If a sequent is not provable, the semantic entailment relation does hold.If for a sequent the semantic entailment relation does not hold, it cannot be proven with natural deduction.
4.2.5 Given an invalid sequent, how do you show its invalidity?

