

Contents

11 Soundness and Completenes	s of Natural Deduction	1
11.1 Soundness and Completene	ess of Natural Deduction	1

11 Soundness and Completeness of Natural Deduction

11.1 Soundness and Completeness of Natural Deduction

11.1.1

- (a) Explain what it means that natural deduction for propositional logic is sound?
- (b) The soundness of natural deduction for propositional logic can be proven via a mathematical induction proof. Discuss the proof idea by stating the *induction hypothesis*, and what needs to be shown for the *induction base-case* as well as for the *induction step*.
- 11.1.2 The soundness of natural deduction for propositional logic can be proven via a mathematical course-of-values induction on the length of the Natural Deduction proof. Let M(k) be the following assertion:
- M(k) := "For all sequents $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ which have a proof of length k, it is the case that $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$ holds."

Your tasks:

- (a) Proof the induction base-case, i.e., M(1) holds.
- (b) Explain the proof idea of the induction step: $M(1) \wedge M(2) \wedge \cdots \wedge M(k-1) \rightarrow M(k)$.
- 11.1.3 The soundness of natural deduction for propositional logic can be proven via a mathematical course-of-values induction on the length of the Natural Deduction proof. Let M(k) be the following assertion:
- M(k) := "For all sequents $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ which have a proof of length k, it is the case that $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$ holds."

Discuss the **induction step** $M(1) \wedge M(2) \wedge \cdots \wedge M(k-1) \rightarrow M(k)$ under the assumption that the \neg_e was applied as a final rule to prove the conclusion.

- 11.1.4 The soundness of natural deduction for propositional logic can be proven via a mathematical course-of-values induction on the length of the Natural Deduction proof. Let M(k) be the following assertion:
- M(k) := "For all sequents $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ which have a proof of length k, it is the case that $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$ holds."

Discuss the **induction step** $M(1) \wedge M(2) \wedge \cdots \wedge M(k-1) \rightarrow M(k)$ under the assumption that the \wedge_i was applied as a final rule to prove the conclusion.

11.1.5

- (a) Explain what it means that natural deduction for propositional logic is *complete*?
- (b) Sketch the idea of the *proof for completeness* of natural deduction for propositional logic. List the three sub-proofs that need to be performed to prove completeness and briefly discuss the idea of each individual sub-proof.
- 11.1.6 The proof of completeness for natural deduction for propositional logic contains the following sub-proof:

If $\models \varphi$ holds, then so does $\vdash \varphi$.

Discuss the proof idea of performing this step of the completeness-proof.