\item \self Consider the Boolean functions $\varphi_1$ and $\varphi_2$ over variables $p$, $q$, and $r$. Their truth table is given below. \begin{tabular}{|c|c|c|c|c||c|c|} \hline $p$&$q$&$r$&$\varphi_1$&$\varphi_2$&$\psi$&$\gamma$\\ \hline \hline \textbf{F} &\textbf{F} &\textbf{F} &\textbf{F} &\textbf{F} & &\\ \hline \textbf{F} &\textbf{F} &\textbf{T} &\textbf{F} &\textbf{F} & &\\ \hline \textbf{F} &\textbf{T} &\textbf{F} &\textbf{T} &\textbf{T} & &\\ \hline \textbf{F} &\textbf{T} &\textbf{T} &\textbf{F} &\textbf{F} & &\\ \hline \textbf{T} &\textbf{F} &\textbf{F} &\textbf{T} &\textbf{F} & &\\ \hline \textbf{T} &\textbf{F} &\textbf{T} &\textbf{F} &\textbf{T} & &\\ \hline \textbf{T} &\textbf{T} &\textbf{F} &\textbf{F} &\textbf{F} & &\\ \hline \textbf{T} &\textbf{T} &\textbf{T} &\textbf{F} &\textbf{F} & &\\ \hline \end{tabular} \begin{enumerate} \item Fill the column for $\psi$ such that $\varphi_1$ entails $\psi$ (i.e., $\varphi_1 \models \psi$), but $\varphi_2$ does \emph{not} entail $\psi$ (i.e., $\varphi_2 \nvDash \psi$). \item Fill the column for $\gamma$ such that $\varphi_1$ implies $\gamma$ (i.e., $\varphi_1 \rightarrow \gamma$) as well as $\varphi_2$ implies $\gamma$ (i.e., $\varphi_2 \rightarrow \gamma$). \end{enumerate}