\item \self Consider the propositional formula $\varphi = (\neg p \imp r) \land (r \imp \neg p) \land q$. \begin{enumerate} \item Fill out the truth table for $\varphi$ (and its subformulas). \begin{tabular}{|c|c|c||c|c|c|c|} \hline $p$&$q$&$r$&$\;\neg p\;$&$(\neg p \imp r)$&$(r \imp \neg p)$&$\quad\varphi\quad$\\ \hline \hline \textbf{F} &\textbf{F} &\textbf{F} & \T & \F & \T & \F \\ \hline \textbf{F} &\textbf{F} &\textbf{T} & \T & \T & \T & \F \\ \hline \textbf{F} &\textbf{T} &\textbf{F} & \T & \F & \T & \F \\ \hline \textbf{F} &\textbf{T} &\textbf{T} & \T & \T & \T & \T \\ \hline \textbf{T} &\textbf{F} &\textbf{F} & \F & \T & \T & \F \\ \hline \textbf{T} &\textbf{F} &\textbf{T} & \F & \T & \F & \F \\ \hline \textbf{T} &\textbf{T} &\textbf{F} & \F & \T & \T & \T \\ \hline \textbf{T} &\textbf{T} &\textbf{T} & \F & \T & \F & \F \\ \hline \end{tabular} \item Is $\varphi$ satisfiable? \\ \quad Yes. \item Is $\varphi$ valid? \\ \quad No. \item Give a formula $\psi$ that semantically entails $\varphi$. \\ \quad For any formula $\varphi$ it holds that $\bot \models \varphi$, we can therefore choose $\psi = \bot$. We could also represent $\varphi$ as DNF: $(\neg p \land q \land r) \lor (p \land q \land \neg r)$. This is an equivalent formula and therefore semantically entails $\varphi$. \item Give a formula $\psi$ such that $\varphi$ semantically entails $\psi$. \\ \quad For any formula $\varphi$ it holds that $\varphi \models \top$. We could also again choose $\varphi$ in DNF. \end{enumerate}