\item \self Consider the propositional formula $\psi = (p \imp q) \land(q \imp r) \land (\neg r \lor p)$. \begin{enumerate} \item Fill out the truth table for $\varphi$ (and its subformulas). \begin{tabular}{|c|c|c||c|c|c|c|c|} \hline $p$&$q$&$r$&$(p \imp q)$&$(q \imp r)$&$\;\neg r\;$&$(\neg r \lor p)$&$\quad\psi\quad$\\ \hline \hline \textbf{F} &\textbf{F} &\textbf{F} & \T & \T & \T & \T & \T\\ \hline \textbf{F} &\textbf{F} &\textbf{T} & \T & \T & \F & \F & \F\\ \hline \textbf{F} &\textbf{T} &\textbf{F} & \T & \F & \T & \T & \F\\ \hline \textbf{F} &\textbf{T} &\textbf{T} & \T & \T & \F & \F & \F\\ \hline \textbf{T} &\textbf{F} &\textbf{F} & \F & \T & \T & \T & \F\\ \hline \textbf{T} &\textbf{F} &\textbf{T} & \F & \T & \F & \T & \F\\ \hline \textbf{T} &\textbf{T} &\textbf{F} & \T & \F & \T & \T & \F\\ \hline \textbf{T} &\textbf{T} &\textbf{T} & \T & \T & \F & \T & \T\\ \hline \end{tabular} \item Is $\varphi$ satisfiable? \\ \quad Yes. \item Is $\varphi$ valid? \\ \quad No. \item Give a formula $\varphi$ that semantically entails $\psi$. \\ \quad An equivalent formula $\varphi$ semantically entails $\psi$, therefore we let $\varphi = \psi$. \item How can you check, using a truth table, whether $\varphi$ semantically entails $\psi$? \\ \quad We can check this by looking at the models that satisfy the two formulas. If every model that satisfies $\varphi$ also models $\psi$, then $\varphi$ semantically entails $\psi$. \end{enumerate}