\item \self Consider the propositional formula $\varphi = (p \imp q) \land(q \imp r) \land (\neg r \lor p)$. \begin{enumerate} \item Fill out the truth table for $\varphi$ (and its subformulas). \begin{tabular}{|c|c|c||c|c|c|c|c|} \hline $p$&$q$&$r$&$(p \imp q)$&$(q \imp r)$&$\;\neg r\;$&$(\neg r \lor p)$&$\quad\varphi\quad$\\ \hline \hline \textbf{F} &\textbf{F} &\textbf{F} & & & & &\\ \hline \textbf{F} &\textbf{F} &\textbf{T} & & & & &\\ \hline \textbf{F} &\textbf{T} &\textbf{F} & & & & &\\ \hline \textbf{F} &\textbf{T} &\textbf{T} & & & & &\\ \hline \textbf{T} &\textbf{F} &\textbf{F} & & & & &\\ \hline \textbf{T} &\textbf{F} &\textbf{T} & & & & &\\ \hline \textbf{T} &\textbf{T} &\textbf{F} & & & & &\\ \hline \textbf{T} &\textbf{T} &\textbf{T} & & & & &\\ \hline \end{tabular} \item Is $\varphi$ satisfiable? \item Is $\varphi$ valid? \item Give a formula $\psi$ that semantically entails $\varphi$ (i.e., it should be the case that $\psi \models \varphi$). \item How can you check, using a truth table, whether $\psi$ semantically entails $\varphi$? \end{enumerate}