\begin{tikzpicture}[every tree node/.style={draw,circle},sibling distance=.15cm] \Tree [.$\exists x$ [.$\forall y$ [.$\imp$ [.$P$ $x$ $y$ ] [.$\lor$ [.$Q$ $x$ $y$ ] [.$R$ $x$ $y$ ] ] ] ] ] \end{tikzpicture} \begin{multicols}{2} $$x=a \land y=a$$ \begin{tikzpicture}[every tree node/.style={draw,circle},sibling distance=.15cm] \Tree % [.$\exists x$ % [.$\forall y$ [.$\imp$ [.$P$ $a$ $a$ ] [.$\lor$ [.$Q$ $a$ $a$ ] [.$R$ $a$ $a$ ] ] ] % ] % ] \end{tikzpicture} \begin{align*} &P(a,a) \imp (Q(a,a) \lor R(a,a)) = \\ &\true \imp (\true \lor \true) = \true \end{align*} \columnbreak $$x=a \land y=b$$ \begin{tikzpicture}[every tree node/.style={draw,circle},sibling distance=.15cm] \Tree % [.$\exists x$ % [.$\forall y$ [.$\imp$ [.$P$ $a$ $b$ ] [.$\lor$ [.$Q$ $a$ $b$ ] [.$R$ $a$ $b$ ] ] ] % ] % ] \end{tikzpicture} \begin{align*} &P(a,b) \imp (Q(a,b) \lor R(a,b)) = \\ &\true \imp (\true \lor \false) = \true \end{align*} \end{multicols} \begin{centering} $$x=a \land y=c$$ \begin{tikzpicture}[every tree node/.style={draw,circle},sibling distance=.15cm] \Tree % [.$\exists x$ % [.$\forall y$ [.$\imp$ [.$P$ $a$ $c$ ] [.$\lor$ [.$Q$ $a$ $c$ ] [.$R$ $a$ $c$ ] ] ] % ] % ] \end{tikzpicture} \begin{align*} &P(a,c) \imp (Q(a,c) \lor R(a,c)) = \\ &\false \imp (\true \lor \true) = \true \end{align*} \end{centering} We have found an $x$, such that for all $y$ the formula evaluates to \textit{true}. Therefore $$M \models \varphi.$$