Using the variables $v_1$ and $v_0$, we can define the transition relation using the following formula:\\ \begin{center} $\lnot v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\ $\lnot v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\ $v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land v'_0) \ \lor$\\ $v_1 \land v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0)$ \end{center} We can further simplify the formula to: \begin{center} $\lnot v_1 \land \lnot v_0 \lor$\\ $\lnot v_1 \land v_0 \land (v'_0 \lor v'_1 \land \lnot v'_0) \ \lor$\\ $v_1 \land \lnot v_0 \land (\lnot v'_1 \lor v'_1 \land v'_0) \ \lor$\\ $v_1 \land v_0$ \end{center}