We start by computing $\skel$: \begin{compactItemize} \item $e_{0}\Leftrightarrow(x=y)$ \item $e_{1}\Leftrightarrow(y=f(y))$ \item $e_{2}\Leftrightarrow(y=f(x))$ \item $e_{3}\Leftrightarrow(z=f(z))$ \item $e_{4}\Leftrightarrow(f(z)=f(x))$ \end{compactItemize} $$ \skel = e_{0} \land e_{1} \land \neg e_{2} \land e_{3} \land e_{4}$$ \hspace{-0.09cm}\scalebox{0.85}{ \begin{dplltabular}{6} \dpllStep{1|2|3|4|5|6} \dpllDecL{0|0|0|0|0|0} \dpllAssi{ - |$e_{0}$|$e_{0}, e_{1}$|$e_{0}, e_{1}, \lnot e_{2}$|\makecell{$e_{0}, e_{1}, \lnot e_{2}, $ \\ $e_{3}$}|\makecell{$e_{0}, e_{1}, \lnot e_{2}, $ \\ $e_{3}, e_{4}$}} \dpllClause{1}{$e_{0}$}{$e_{0}$|\done|\done|\done|\done|\done} \dpllClause{2}{$e_{1}$}{$e_{1}$|$e_{1}$|\done|\done|\done|\done} \dpllClause{3}{$\lnot e_{2}$}{$\lnot e_{2}$|$\lnot e_{2}$|$\lnot e_{2}$|\done|\done|\done} \dpllClause{4}{$e_{3}$}{$e_{3}$|$e_{3}$|$e_{3}$|$e_{3}$|\done|\done} \dpllClause{5}{$e_{4}$}{$e_{4}$|$e_{4}$|$e_{4}$|$e_{4}$|$e_{4}$|\done} \dpllBCP{$e_{0}$|$e_{1}$|$\lnot e_{2}$|$e_{3}$|$e_{4}$| - } \dpllPL{ - | - | - | - | - | - } \dpllDeci{ - | - | - | - | - |SAT} \end{dplltabular} } \vspace{0.5em} The SAT solver has computed that $\skel$ is satisfiable, we are therefore going to check for consistency with the theory: \begin{align*} &\{x, y\}, \{y, f(y)\}, \{z, f(z)\}, \{f(z), f(x)\}\\ &\{f(y), x, y\}, \{f(x), f(z), z\} \end{align*} The $\EUF$-Solver returned SAT, therefore $\varphi$ is satisfiable.