Browse Source

added ndprop chapter

main release_ndprop
sp 2 months ago
parent
commit
c3a0d9000e
  1. 2
      compile
  2. 6
      main.tex
  3. 1
      natural_deduction_propositional_logic/0001.tex
  4. 9
      natural_deduction_propositional_logic/0001_sol.tex
  5. 1
      natural_deduction_propositional_logic/0002.tex
  6. 7
      natural_deduction_propositional_logic/0002_sol.tex
  7. 1
      natural_deduction_propositional_logic/0003.tex
  8. 22
      natural_deduction_propositional_logic/0003_sol.tex
  9. 1
      natural_deduction_propositional_logic/0004.tex
  10. 13
      natural_deduction_propositional_logic/0004_sol.tex
  11. 4
      natural_deduction_propositional_logic/0005.tex
  12. 11
      natural_deduction_propositional_logic/0005_sol.tex
  13. 1
      natural_deduction_propositional_logic/0006.tex
  14. 11
      natural_deduction_propositional_logic/0006_sol.tex
  15. 8
      natural_deduction_propositional_logic/0007.tex
  16. 18
      natural_deduction_propositional_logic/0007_sol.tex
  17. 1
      natural_deduction_propositional_logic/0008.tex
  18. 15
      natural_deduction_propositional_logic/0008_sol.tex
  19. 1
      natural_deduction_propositional_logic/0009.tex
  20. 11
      natural_deduction_propositional_logic/0009_sol.tex
  21. 1
      natural_deduction_propositional_logic/0010.tex
  22. 19
      natural_deduction_propositional_logic/0010_sol.tex
  23. 1
      natural_deduction_propositional_logic/0011.tex
  24. 20
      natural_deduction_propositional_logic/0011_sol.tex
  25. 1
      natural_deduction_propositional_logic/0012.tex
  26. 20
      natural_deduction_propositional_logic/0012_sol.tex
  27. 2
      natural_deduction_propositional_logic/0013.tex
  28. 1
      natural_deduction_propositional_logic/0014.tex
  29. 5
      natural_deduction_propositional_logic/0014_sol.tex
  30. 7
      natural_deduction_propositional_logic/0015.tex
  31. 16
      natural_deduction_propositional_logic/0015_sol.tex
  32. 1
      natural_deduction_propositional_logic/0016.tex
  33. 1
      natural_deduction_propositional_logic/0017.tex
  34. 11
      natural_deduction_propositional_logic/0017_sol.tex
  35. 1
      natural_deduction_propositional_logic/0018.tex
  36. 1
      natural_deduction_propositional_logic/0019.tex
  37. 4
      natural_deduction_propositional_logic/0019_sol.tex
  38. 1
      natural_deduction_propositional_logic/0020.tex
  39. 10
      natural_deduction_propositional_logic/0020_sol.tex
  40. 1
      natural_deduction_propositional_logic/0021.tex
  41. 13
      natural_deduction_propositional_logic/0021_sol.tex
  42. 1
      natural_deduction_propositional_logic/0022.tex
  43. 13
      natural_deduction_propositional_logic/0022_sol.tex
  44. 1
      natural_deduction_propositional_logic/0023.tex
  45. 22
      natural_deduction_propositional_logic/0023_sol.tex
  46. 1
      natural_deduction_propositional_logic/0024.tex
  47. 30
      natural_deduction_propositional_logic/0024_sol.tex
  48. 1
      natural_deduction_propositional_logic/0025.tex
  49. 16
      natural_deduction_propositional_logic/0025_sol.tex
  50. 8
      natural_deduction_propositional_logic/0027.tex
  51. 16
      natural_deduction_propositional_logic/0027_sol.tex
  52. 1
      natural_deduction_propositional_logic/0028.tex
  53. 17
      natural_deduction_propositional_logic/0028_sol.tex
  54. 1
      natural_deduction_propositional_logic/0029.tex
  55. 20
      natural_deduction_propositional_logic/0029_sol.tex
  56. 1
      natural_deduction_propositional_logic/0030.tex
  57. 4
      natural_deduction_propositional_logic/0030_sol.tex
  58. 1
      natural_deduction_propositional_logic/0031.tex
  59. 23
      natural_deduction_propositional_logic/0031_sol.tex
  60. 1
      natural_deduction_propositional_logic/0032.tex
  61. 20
      natural_deduction_propositional_logic/0032_sol.tex
  62. 1
      natural_deduction_propositional_logic/0033.tex
  63. 4
      natural_deduction_propositional_logic/0033_sol.tex
  64. 1
      natural_deduction_propositional_logic/0035.tex
  65. 4
      natural_deduction_propositional_logic/0035_sol.tex
  66. 1
      natural_deduction_propositional_logic/0036.tex
  67. 4
      natural_deduction_propositional_logic/0036_sol.tex
  68. 1
      natural_deduction_propositional_logic/0037.tex
  69. 4
      natural_deduction_propositional_logic/0037_sol.tex
  70. 3
      natural_deduction_propositional_logic/0038.tex
  71. 10
      natural_deduction_propositional_logic/0038_sol.tex
  72. 1
      natural_deduction_propositional_logic/0039.tex
  73. 12
      natural_deduction_propositional_logic/0039_sol.tex
  74. 3
      natural_deduction_propositional_logic/0040.tex
  75. 10
      natural_deduction_propositional_logic/0040_sol.tex
  76. 3
      natural_deduction_propositional_logic/0041.tex
  77. 4
      natural_deduction_propositional_logic/0041_sol.tex
  78. 1
      natural_deduction_propositional_logic/0042.tex
  79. 20
      natural_deduction_propositional_logic/0042_sol.tex
  80. 1
      natural_deduction_propositional_logic/0043.tex
  81. 43
      natural_deduction_propositional_logic/0043_sol.tex
  82. 1
      natural_deduction_propositional_logic/0044.tex
  83. 14
      natural_deduction_propositional_logic/0044_sol.tex
  84. 2
      natural_deduction_propositional_logic/0045.tex
  85. 13
      natural_deduction_propositional_logic/0045_sol.tex
  86. 2
      natural_deduction_propositional_logic/0046.tex
  87. 7
      natural_deduction_propositional_logic/0046_sol.tex
  88. 1
      natural_deduction_propositional_logic/0047.tex
  89. 2
      natural_deduction_propositional_logic/0048.tex
  90. 1
      natural_deduction_propositional_logic/0049.tex
  91. 2
      natural_deduction_propositional_logic/0050.tex
  92. 1
      natural_deduction_propositional_logic/0051.tex
  93. 1
      natural_deduction_propositional_logic/0052.tex
  94. 9
      natural_deduction_propositional_logic/0053.tex
  95. 9
      natural_deduction_propositional_logic/0053_sol.tex
  96. 9
      natural_deduction_propositional_logic/0056.tex
  97. 27
      natural_deduction_propositional_logic/0057.tex
  98. 27
      natural_deduction_propositional_logic/0058.tex
  99. 1
      natural_deduction_propositional_logic/0059.tex
  100. 19
      natural_deduction_propositional_logic/0059_sol.tex

2
compile

@ -104,7 +104,7 @@ compile_wrapper() {
compile_chapter() {
#for chapter in smtzthree proplogic satsolver ndpred predlogic ndpred smt bdd eqchecking symbenc temporal
for chapter in bdd satsolver proplogic
for chapter in ndprop
do
set_chapter "\\chapter${chapter}true"
compile_wrapper "$chapter" "$@"

6
main.tex

@ -78,6 +78,12 @@
\pagebreak
\fi
\ifchapterndprop
\setsectionnum{3}
\section{Natural Deduction for Propositional Logic}
\input{natural_deduction_propositional_logic/natural_deduction_prop_logic.tex}
\pagebreak
\fi
%---------------------------------------------------------

1
natural_deduction_propositional_logic/0001.tex

@ -0,0 +1 @@
\item \lect $p, q, r \ent p \land (q \land r)$

9
natural_deduction_propositional_logic/0001_sol.tex

@ -0,0 +1,9 @@
This sequent is provable.
\begin{logicproof}{2}
p & prem. \\
q & prem. \\
r & prem. \\
q \land r & $\land$i 2,3 \\
p \land (q \land r) & $\land$i 1,4
\end{logicproof}

1
natural_deduction_propositional_logic/0002.tex

@ -0,0 +1 @@
\item \lect $p \land (q \land r) \ent q$

7
natural_deduction_propositional_logic/0002_sol.tex

@ -0,0 +1,7 @@
This sequent is provable.
\begin{logicproof}{2}
p \land (q \land r) & prem. \\
q \land r & $\land$e2 1 \\
q & $\land$e1 2
\end{logicproof}

1
natural_deduction_propositional_logic/0003.tex

@ -0,0 +1 @@
\item \lect $p \land q, \lnot q \land r \ent \lnot \lnot p \land \lnot \lnot r$

22
natural_deduction_propositional_logic/0003_sol.tex

@ -0,0 +1,22 @@
This sequent is provable.
\emph{Solution 1:}
\begin{logicproof}{2}
p \land q & prem. \\
\lnot q \land r & prem. \\
p & $\land$e1 1 \\
r & $\land$e2 2 \\
\lnot \lnot p & $\lnot \lnot$i 3 \\
\lnot \lnot r & $\lnot \lnot$i 4 \\
\lnot \lnot p \land \lnot \lnot r & $\land$i 5,6
\end{logicproof}
\emph{Solution 2:}
\begin{logicproof}{2}
p \land q & prem. \\
\lnot q \land r & prem. \\
q & $\land$e2 1 \\
\lnot q & $\land$e1 2 \\
\bot & $\lnot$e 3,4 \\
\lnot \lnot p \land \lnot \lnot r & $\bot$e 5
\end{logicproof}

1
natural_deduction_propositional_logic/0004.tex

@ -0,0 +1 @@
\item \lect $\lnot \lnot \lnot p \land q, \lnot \lnot r \ent r \land \lnot p \land \lnot \lnot q$

13
natural_deduction_propositional_logic/0004_sol.tex

@ -0,0 +1,13 @@
This sequent is provable.
\begin{logicproof}{2}
\lnot \lnot \lnot p \land q & \prem \\
\lnot \lnot r & \prem \\
\lnot \lnot \lnot p & $\ande{1}1$ \\
q & $\ande{2}1$ \\
r & $\negnege2$ \\
\lnot p & $\negnege3$ \\
\lnot \lnot q & $\negnegi4$ \\
r \land \lnot p & $\andi 5,6$ \\
r \land \lnot p \land \lnot \lnot q & $\andi 8,7$
\end{logicproof}

4
natural_deduction_propositional_logic/0005.tex

@ -0,0 +1,4 @@
\item \ifassignmentsheet \points{2}
\else \prac
\fi
$p \land q, q \imp \lnot \lnot r \ent p \land r$

11
natural_deduction_propositional_logic/0005_sol.tex

@ -0,0 +1,11 @@
This sequent is provable.
\begin{logicproof}{2}
p \land q & \prem \\
q \imp \lnot \lnot r & \prem \\
q & $\ande{2} 1$\\
\lnot \lnot r & $\impe 2,3$ \\
r & $\negnege 4$ \\
p & $\ande{1} 1$ \\
p \land r & $\andi 6,5$
\end{logicproof}

1
natural_deduction_propositional_logic/0006.tex

@ -0,0 +1 @@
\item \lect $\lnot p \imp q, \lnot \lnot \lnot q \land r \ent p \land \lnot \lnot \lnot q$

11
natural_deduction_propositional_logic/0006_sol.tex

@ -0,0 +1,11 @@
This sequent is provable.
\begin{logicproof}{2}
\lnot p \imp q & \prem \\
\lnot \lnot \lnot q \land r & \prem \\
\lnot \lnot \lnot q & $\ande{1} 2$ \\
\lnot q & $\negnege 3$ \\
\lnot\lnot p & $\MT 1,4$ \\
p & $\negnege 5$ \\
p \land \lnot \lnot \lnot q & $\andi 6,3$
\end{logicproof}

8
natural_deduction_propositional_logic/0007.tex

@ -0,0 +1,8 @@
\item \self
Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction.
If the sequent is not valid, provide a counter example.
\begin{quote}
If I press the button, the window opens. \\
I pressed the button.\\
Therefore, the window is open.\\
\end{quote}

18
natural_deduction_propositional_logic/0007_sol.tex

@ -0,0 +1,18 @@
Translation: \\
$p:$ \quad I press the button. \\
$q:$ \quad The window is open.
\begin{tabbing}
If I press the button, the window opens. \quad \= $p \imp q$ \\
I pressed the button. \> $p$ \\
The window is open. \> $q$
\end{tabbing}
\emph{Sequent:} \quad $p \imp q, p \vdash q$ \\
This sequent is provable.
\begin{logicproof}{1}
p \imp q & \prem \\
p & \prem \\
q & $\impe 1,2$
\end{logicproof}

1
natural_deduction_propositional_logic/0008.tex

@ -0,0 +1 @@
\item \lect $p \imp (q \land r), q \imp s \ent p \imp (s \land r)$

15
natural_deduction_propositional_logic/0008_sol.tex

@ -0,0 +1,15 @@
This sequent is provable.
\begin{logicproof}{2}
p \imp (q \land r) & \prem \\
q \imp s & \prem \\
\begin{subproof}
p & \assum \\
q \land r & $\impe 1,3$ \\
q & $\ande{1} 4$ \\
s & $\impe 2,5$ \\
r & $\ande{2} 4$ \\
s \land r & $\andi 6,7$
\end{subproof}
p \imp (s \land r) & $\impi 3-8$
\end{logicproof}

1
natural_deduction_propositional_logic/0009.tex

@ -0,0 +1 @@
\item \lect $p \land q, r \imp s \ent (p \lor (r \imp s)) \land (q \lor ((t \lor r) \imp u))$

11
natural_deduction_propositional_logic/0009_sol.tex

@ -0,0 +1,11 @@
This sequent is provable.
\begin{logicproof}{1}
p \land q & \prem \\
r \imp s & \prem \\
p & $\ande{1} 1$ \\
p \lor (r \imp s) & $\ori{1} 3$ \\
q & $\ande{2} 1$ \\
q \lor ((t \lor r) \imp u) & $\ori{1} 5$ \\
(p \lor (r \imp s)) \land (q \lor ((t \lor r) \imp u)) & $\andi 4,6$
\end{logicproof}

1
natural_deduction_propositional_logic/0010.tex

@ -0,0 +1 @@
\item \lect $p \lor \lnot \lnot q, \lnot p \land \lnot q \ent s \lor \lnot t$

19
natural_deduction_propositional_logic/0010_sol.tex

@ -0,0 +1,19 @@
This sequent is provable.
\begin{logicproof}{1}
p \lor \lnot \lnot q & \prem \\
\lnot p \land \lnot q & \prem \\
\begin{subproof}
p & \assum \\
\lnot p & $\ande{1} 2$ \\
\bot & $\nege 3,4$ \\
s \lor \lnot t & $\bote 5$
\end{subproof}
\begin{subproof}
\lnot \lnot q & \assum \\
\lnot q & $\ande{2} 2$ \\
\bot & $\nege 7,8$\\
s \lor \lnot t & $\bote 9$
\end{subproof}
s \lor \lnot t & $\ore 1, 3-6, 7-10$
\end{logicproof}

1
natural_deduction_propositional_logic/0011.tex

@ -0,0 +1 @@
\item \lect $\lnot q \lor \lnot p \ent \lnot (q \land p)$

20
natural_deduction_propositional_logic/0011_sol.tex

@ -0,0 +1,20 @@
This sequent is provable.
\begin{logicproof}{2}
\lnot q \lor \lnot p & \prem \\
\begin{subproof}
q \land p & \assum \\
\begin{subproof}
\lnot q & \assum \\
q & $\ande{1} 2$ \\
\bot & $\nege 3,4$
\end{subproof}
\begin{subproof}
\lnot p & \assum \\
p & $\ande{2} 2$ \\
\bot & $\nege 6,7$
\end{subproof}
\bot & $\ore 1, 3-5, 6-8$
\end{subproof}
\lnot (q \land p) & $\negi 2-9$
\end{logicproof}

1
natural_deduction_propositional_logic/0012.tex

@ -0,0 +1 @@
\item \lect $\ent ((p \imp q) \imp p) \imp p$

20
natural_deduction_propositional_logic/0012_sol.tex

@ -0,0 +1,20 @@
This sequent is provable.
\begin{logicproof}{3}
\begin{subproof}
(p \imp q) \imp p & \assum \\
\begin{subproof}
\lnot p & \assum \\
\lnot (p \imp q) & $\MT 1,2$ \\
\begin{subproof}
p & \assum \\
\bot & $\nege 2,4$ \\
q & $\bote 5$
\end{subproof}
p \imp q & $\impi 4-6$ \\
\bot & $\nege 3,7$
\end{subproof}
p & $\PBC 2-8$
\end{subproof}
((p \imp q) \imp p) \imp p & $\impi 1-9$
\end{logicproof}

2
natural_deduction_propositional_logic/0013.tex

@ -0,0 +1,2 @@
\item \points{4}
$\lnot (q \land p) \ent \lnot q \lor \lnot p$

1
natural_deduction_propositional_logic/0014.tex

@ -0,0 +1 @@
\item \lect $p \rightarrow q, q \rightarrow r \ent r$.

5
natural_deduction_propositional_logic/0014_sol.tex

@ -0,0 +1,5 @@
This sequent is not provable.
$\mathcal{M} : p = F, q = F, r = F$ \\
$\mathcal{M} \models p \imp q, q \imp r$ \\
$\mathcal{M} \nmodels r$

7
natural_deduction_propositional_logic/0015.tex

@ -0,0 +1,7 @@
\item \lect Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction.
If the sequent is not valid, provide a counter example.
\begin{quote}
If I press the button, the window opens. \\
The window is open.\\
Therefore, I pressed the button.\\
\end{quote}

16
natural_deduction_propositional_logic/0015_sol.tex

@ -0,0 +1,16 @@
Translation: \\
$p:$ \quad Press button. \\
$q:$ \quad Open window.
\begin{tabbing}
If I press the button, the window opens. \quad \= $p \imp q$ \\
The window is open. \> $q$ \\
Therefore, I pressed the button. \> $\vdash p$
\end{tabbing}
\emph{sequent:} \quad $p \imp q, q \vdash p$ \\
This sequent is not provable.
$\mathcal{M} : p = F, q = T$ \\
$\mathcal{M} \models p \imp q, q$ \\
$\mathcal{M} \nmodels p$

1
natural_deduction_propositional_logic/0016.tex

@ -0,0 +1 @@
\item $x \land (y \land z) \ent (x \land y) \land z$

1
natural_deduction_propositional_logic/0017.tex

@ -0,0 +1 @@
\item \self $\lnot \lnot p \land \lnot \lnot q, r \land s \ent (p \land r) \land \lnot \lnot s$

11
natural_deduction_propositional_logic/0017_sol.tex

@ -0,0 +1,11 @@
\begin{logicproof}{2}
\lnot \lnot p \land \lnot \lnot q & \prem \\
r \land s & \prem \\
\lnot \lnot p & $\ande{1} 1$ \\
p & $\lnot \nege 3$ \\
r & $\ande{1} 2$ \\
s & $\ande{2} 2$ \\
\lnot \lnot s & $\negnegi 6$ \\
p \land r & $\andi 4,5$ \\
(p \land r) \land \lnot \lnot s & $\andi 8,7$
\end{logicproof}

1
natural_deduction_propositional_logic/0018.tex

@ -0,0 +1 @@
\item \self $(p \imp q) \land (q \imp r), p \ent \lnot \lnot r \land \lnot p$

1
natural_deduction_propositional_logic/0019.tex

@ -0,0 +1 @@
\item \self $(\lnot p \imp q) \land (q \imp r), \lnot r \ent \lnot \lnot \lnot r \land \lnot p$

4
natural_deduction_propositional_logic/0019_sol.tex

@ -0,0 +1,4 @@
This sequent is not provable, counter example: \\
$\mathcal{M} : p = T, q = F, r = F$ \\
$\mathcal{M} \models (\lnot p \implies q) \land (q \implies r), \lnot r$ \\
$\mathcal{M} \nmodels \lnot \lnot \lnot r \land \lnot p$

1
natural_deduction_propositional_logic/0020.tex

@ -0,0 +1 @@
\item \self $(p \imp q) \imp r \ent \lnot r \land \lnot s \imp \lnot (p \imp q)$

10
natural_deduction_propositional_logic/0020_sol.tex

@ -0,0 +1,10 @@
\begin{logicproof}{2}
(p \implies q)
\implies r & \prem \\
\begin{subproof}
\lnot r \land \lnot s & \assum \\
\lnot r & $\ande{1} 2$ \\
\lnot (p \implies q) & $\MT 1,3$
\end{subproof}
\lnot r \land \lnot s \implies \lnot (p \implies q) & $\impi 2-4$
\end{logicproof}

1
natural_deduction_propositional_logic/0021.tex

@ -0,0 +1 @@
\item \self $p \imp q \ent (r \imp p) \imp (r \imp q)$

13
natural_deduction_propositional_logic/0021_sol.tex

@ -0,0 +1,13 @@
\begin{logicproof}{2}
p \implies q & \prem \\
\begin{subproof}
r \implies p & \assum \\
\begin{subproof}
r & \assum \\
p & $\impe 2,3$ \\
q & $\impe 1,4$
\end{subproof}
r \implies q & $\impi 3-5$
\end{subproof}
(r \implies p) \implies (r \implies q) & $\impi 2-6$
\end{logicproof}

1
natural_deduction_propositional_logic/0022.tex

@ -0,0 +1 @@
\item \self $p \imp q, p \land (r \lor q) \ent (q \imp p) \imp ((s \land t) \lor q) \land (r \lor q)$

13
natural_deduction_propositional_logic/0022_sol.tex

@ -0,0 +1,13 @@
\begin{logicproof}{2}
p \implies q & \prem \\
p \land (r \lor q) & \prem \\
\begin{subproof}
q \implies p & \assum \\
r \lor q & $\ande{2} 2$ \\
p & $\ande{1} 2$ \\
q & $\impe 1,5$ \\
(s \land t) \lor q & $\ori{2} 6$ \\
((s \land t) \lor q) \land (r \lor q) & $\andi 7,4$
\end{subproof}
(q \implies p) \implies ((s \land t) \lor q) \land (r \lor q) & $\impi 3-7$
\end{logicproof}

1
natural_deduction_propositional_logic/0023.tex

@ -0,0 +1 @@
\item \self $p \lor q, \neg p \lor r \ent q \lor r$

22
natural_deduction_propositional_logic/0023_sol.tex

@ -0,0 +1,22 @@
\begin{logicproof}{2}
p \lor q & \prem \\
\lnot p \lor r & \prem \\
\begin{subproof}
p & \assum \\
\begin{subproof}
\lnot p & \assum \\
\false & $\nege 3,4$ \\
q \lor r & $\bote 5$
\end{subproof}
\begin{subproof}
r & \assum \\
q \lor r & $\ori{2} 7$
\end{subproof}
q \lor r & $\ore 2,4-6,7-8$
\end{subproof}
\begin{subproof}
q & \assum \\
q \lor r & $\ori{1} 10$
\end{subproof}
q \lor r & $\ore 1,3-9,10-11$
\end{logicproof}

1
natural_deduction_propositional_logic/0024.tex

@ -0,0 +1 @@
\item \self $p \imp q, p \land r \lor q \ent (q \imp p) \imp ((s \land t) \lor q) \land (r \lor q)$

30
natural_deduction_propositional_logic/0024_sol.tex

@ -0,0 +1,30 @@
\begin{logicproof}{2}
p \implies q & \prem \\
(p \land r) \lor q & \prem \\
\begin{subproof}
q \implies p & \assum \\
\begin{subproof}
p \land r & \assum \\
r & $\ande{2} 4$ \\
r \lor q & $\ori{1} 5$
\end{subproof}
\begin{subproof}
q & \assum \\
r \lor q & $\ori{2} 7$
\end{subproof}
r \lor q & $\ore 2,4-6,7-8$ \\
\begin{subproof}
p \land r & \assum \\
p & $\ande{1} 10 $\\
q & $\impe 1,11$ \\
(s \land t) \lor q & $\ori{2} 12$
\end{subproof}
\begin{subproof}
q & \assum \\
(s \land t) \lor q & $\ori{2} 14$
\end{subproof}
(s \land t) \lor q & $\ore 2,10-13,14-15 $\\
((s \land t) \lor q) \land (r \lor q) & $\andi 16,9$
\end{subproof}
(q \implies p) \implies ((s \land t) \lor q) \land (r \lor q) & $\impi 3-17$
\end{logicproof}

1
natural_deduction_propositional_logic/0025.tex

@ -0,0 +1 @@
\item \self $p \lor q, p \imp r, \lnot s \imp \lnot q \ent r \lor s$

16
natural_deduction_propositional_logic/0025_sol.tex

@ -0,0 +1,16 @@
\begin{logicproof}{2}
p \lor q & \prem \\
p \implies r & \prem \\
\lnot s \implies \lnot q & \prem \\
\begin{subproof}
p & \assum \\
r & $\impe 4,2$ \\
r \lor s & $\ori{1} 5$
\end{subproof}
\begin{subproof}
q & \assum \\
s & $\MT 3,7$ \\
r \lor s & $\ori{2} 8$
\end{subproof}
r \lor s & $\ore 1,4-6,7-9$
\end{logicproof}

8
natural_deduction_propositional_logic/0027.tex

@ -0,0 +1,8 @@
\item \self
Translate the following reasoning into a sequent. If the sequent is valid, proof it using the rules of natural deduction.
If the sequent is not valid, provide a counter example.
\begin{quote}
If I press the button, the window opens. \\
The window is not open.\\
Therefore, I didn't press the button.\\
\end{quote}

16
natural_deduction_propositional_logic/0027_sol.tex

@ -0,0 +1,16 @@
$b = $ I press the button. \\
$w = $ The window is open. \\
\bigskip
$b \implies w, \lnot w \entails \lnot b$
\begin{logicproof}{2}
b \implies w & \prem \\
\lnot w & \prem \\
\begin{subproof}
b & \assum \\
w & $\impe 1,3$ \\
\false & $\nege 2,4$
\end{subproof}
\lnot b & $\negi 3-5$
\end{logicproof}

1
natural_deduction_propositional_logic/0028.tex

@ -0,0 +1 @@
\item \self $\lnot q \lor p \ent q \imp (p \lor r)$

17
natural_deduction_propositional_logic/0028_sol.tex

@ -0,0 +1,17 @@
\begin{logicproof}{2}
\lnot q \lor p & \prem \\
\begin{subproof}
q & \assum \\
\begin{subproof}
\lnot q & \assum \\
\false & $\nege 2,3$ \\
p \lor r & $\bote 4$
\end{subproof}
\begin{subproof}
p & \assum \\
p \lor r & $\ori{1} 6$
\end{subproof}
p \lor r & $\ore 1,3-5,6-7$
\end{subproof}
q \implies (p \lor r) & $\impi 2-8$
\end{logicproof}

1
natural_deduction_propositional_logic/0029.tex

@ -0,0 +1 @@
\item \self $p \imp (q \lor r), \lnot q \land \lnot r \ent \lnot p$

20
natural_deduction_propositional_logic/0029_sol.tex

@ -0,0 +1,20 @@
\begin{logicproof}{2}
p \implies (q \lor r) & \prem \\
\lnot q \land \lnot r & \prem \\
\begin{subproof}
p & \assum \\
q \lor r & $\impe 1,3$ \\
\begin{subproof}
q & \assum \\
\lnot q & $\ande{1} 2$ \\
\false & $\nege 5,6$
\end{subproof}
\begin{subproof}
r & \assum \\
\lnot r & $\ande{2} 2$ \\
\false & $\nege 8,9$
\end{subproof}
\false & $\ore 4,5-7,8-10$
\end{subproof}
\lnot p & $\negi 3-11$
\end{logicproof}

1
natural_deduction_propositional_logic/0030.tex

@ -0,0 +1 @@
\item \self $\lnot (q \lor p) \ent \lnot q \land p$

4
natural_deduction_propositional_logic/0030_sol.tex

@ -0,0 +1,4 @@
This sequent is not provable, counter example: \\
$\mathcal{M} : p = F, q = F$ \\
$\mathcal{M} \models \lnot (q \lor p)$ \\
$\mathcal{M} \nmodels \lnot q \land p$

1
natural_deduction_propositional_logic/0031.tex

@ -0,0 +1 @@
\item \self $\ent (p \imp q) \lor (q \imp r)$

23
natural_deduction_propositional_logic/0031_sol.tex

@ -0,0 +1,23 @@
\begin{logicproof}{2}
q \lor \lnot q & $\LEM$ \\
\begin{subproof}
q & \assum\\
\begin{subproof}
p & \assum\\
q & $\copying 2$
\end{subproof}
p \imp q & $\impi 3-4$ \\
(p \to q) \lor (q \to r) & $\ori{1} 5$
\end{subproof}
\begin{subproof}
\lnot q & \assum\\
\begin{subproof}
q & \assum\\
\bot & $\nege 7,8$ \\
r & $\bote 9$
\end{subproof}
q \imp r & $\impi 8-10$ \\
(p \imp q) \lor (q \imp r) & $\ori{2} 11$
\end{subproof}
(p \to q) \lor (q \to r) & $\ore 1, 2-6,7-12$
\end{logicproof}

1
natural_deduction_propositional_logic/0032.tex

@ -0,0 +1 @@
\item \self $(p \imp q) \land (q \imp p) \ent (p \land q) \lor (\lnot p \land \lnot q)$

20
natural_deduction_propositional_logic/0032_sol.tex

@ -0,0 +1,20 @@
\begin{logicproof}{2}
(p \implies q)
\land (q \implies p) & \prem \\
p \lor \lnot p & $\LEM$ \\
\begin{subproof}
p & \assum \\
p \implies q & $\ande{1} 1$ \\
q & $\impe 3,4$ \\
p \land q & $\andi 3,5$ \\
(p \land q) \lor (\lnot p \land \lnot q) & $\ori{1} 6$
\end{subproof}
\begin{subproof}
\lnot p & \assum \\
q \implies p & $\ande{2} 1$ \\
\lnot q & $\MT 8,9$ \\
\lnot p \land \lnot q & $\andi 8,10$ \\
(p \land q) \lor (\lnot p \land \lnot q) & $\ori{2} 11$
\end{subproof}
(p \land q) \lor (\lnot p \land \lnot q) & $\ore 2,3-7,8-12$
\end{logicproof}

1
natural_deduction_propositional_logic/0033.tex

@ -0,0 +1 @@
\item \self $\lnot (p \lor \lnot q) \ent p$

4
natural_deduction_propositional_logic/0033_sol.tex

@ -0,0 +1,4 @@
This sequent is not provable, counter example: \\
$\mathcal{M} : p = F, q = T$ \\
$\mathcal{M} \models \lnot (p \lor \lnot q)$ \\
$\mathcal{M} \nmodels p$

1
natural_deduction_propositional_logic/0035.tex

@ -0,0 +1 @@
\item \self $p \implies q \vdash ((p \lor q) \implies p) \land (p \implies (p \lor q))$

4
natural_deduction_propositional_logic/0035_sol.tex

@ -0,0 +1,4 @@
This sequent is not provable, counter example: \\
$\mathcal{M} : p = F, q = T$ \\
$\mathcal{M} \models p \implies q$ \\
$\mathcal{M} \nmodels ((p \lor q) \implies p) \land (p \implies (p \lor q))$

1
natural_deduction_propositional_logic/0036.tex

@ -0,0 +1 @@
\item \self $p \lor q, \lnot q \lor r \ent r$

4
natural_deduction_propositional_logic/0036_sol.tex

@ -0,0 +1,4 @@
This sequent is not provable, counter example: \\
$\mathcal{M} : p = T, q = F, r = F$ \\
$\mathcal{M} \models p \lor q, \lnot q \lor r$ \\
$\mathcal{M} \nmodels r$

1
natural_deduction_propositional_logic/0037.tex

@ -0,0 +1 @@
\item \self $(p \land q) \imp (\lnot r \land \lnot s), \lnot r \land \lnot s \ent p$

4
natural_deduction_propositional_logic/0037_sol.tex

@ -0,0 +1,4 @@
This sequent is not provable, counter example: \\
$\mathcal{M} : p = F, q = F, r = F, s = F$ \\
$\mathcal{M} \models (p \land q) \implies (\lnot r \land \lnot s), \lnot r \land \lnot s$ \\
$\mathcal{M} \nmodels p$

3
natural_deduction_propositional_logic/0038.tex

@ -0,0 +1,3 @@
\item \lect
Give the definition of a sequent.
Give an example of a sequent and name the parts the sequent consists of.

10
natural_deduction_propositional_logic/0038_sol.tex

@ -0,0 +1,10 @@
A sequent is an expression of the form
\begin{center}
\setlength{\abovedisplayskip}{-15pt}
$\phi_1, \phi_2,\!..., \phi_n \ent \psi.$
\end{center}
$\phi_1, \phi_2,\!..., \phi_n$ are called premises. $\psi$ is called the conclusion.
The premises entail the conclusion.
This means that for any valid sequence, we can proof that the conclusion follows from the premises.

1
natural_deduction_propositional_logic/0039.tex

@ -0,0 +1 @@
\item \lect State the \emph{AND-introduction} rule ($\land$i). Explain how the rule works.

12
natural_deduction_propositional_logic/0039_sol.tex

@ -0,0 +1,12 @@
\begin{center}
\vspace{-0.5cm}
\begin{prooftree}
\AxiomC{$ \varphi $}
\AxiomC{$ \psi $}
\RightLabel{$ \land $i}
\BinaryInfC{$ \varphi \land \psi $}
\end{prooftree}
\end{center}
If we have two formulas that are known to be true separately, then we can
conclude that the conjunction of the two premises must also be true.

3
natural_deduction_propositional_logic/0040.tex

@ -0,0 +1,3 @@
\item \self Provide a natural deduction proof for the following sequent without using the \emph{Modus Tollens} rule:
$$\varphi \imp \psi, \lnot\psi \entails \lnot\varphi$$

10
natural_deduction_propositional_logic/0040_sol.tex

@ -0,0 +1,10 @@
\begin{logicproof}{2}
\lnot\psi & \prem \\
\varphi \imp \psi & \prem \\
\begin{subproof}
\varphi & \assum \\
\psi & $\impe 1,2$ \\
\bot & $\nege 1,4$
\end{subproof}
\lnot\varphi & $\negi 3-5$
\end{logicproof}

3
natural_deduction_propositional_logic/0041.tex

@ -0,0 +1,3 @@
\item \self
Explain the concept of boxes in deduction rules and why they are needed. What does it mean if you make an \textit{assumption} within a box?
Where is this assumption valid?

4
natural_deduction_propositional_logic/0041_sol.tex

@ -0,0 +1,4 @@
Assumptions assume that within the box, a certain formula holds that can be used to prove something within the box.
The assumption is only valid within the box.
Therefore, any formulas proven within the box are only valid inside the box, because they are proven under a given assumption that is only valid in the scope of the box.

1
natural_deduction_propositional_logic/0042.tex

@ -0,0 +1 @@
\item \self Why are there two rules for the \textit{$\lor$-introduction} rule. Explain, why you are able to connect any formula to a certain formula $\phi$ using the connective $\lor$.

20
natural_deduction_propositional_logic/0042_sol.tex

@ -0,0 +1,20 @@
\begin{center}
\begin{minipage}{0.2\textwidth}
\begin{prooftree}
\AxiomC{$ \varphi$}
\RightLabel{$ \ori1$}
\UnaryInfC{$ \varphi \lor \psi$}
\end{prooftree}
\end{minipage}
\begin{minipage}{0.2\textwidth}
\begin{prooftree}
\AxiomC{$ \varphi$}
\RightLabel{$ \ori2$}
\UnaryInfC{$ \psi \lor \varphi$}
\end{prooftree}
\end{minipage}
\end{center}
If we know that $\varphi$ holds, we can derive that $\varphi \lor \psi$ holds and that
$\psi \lor \varphi$ holds. This is true for any $\psi$.

1
natural_deduction_propositional_logic/0043.tex

@ -0,0 +1 @@
\item \self Explain the \emph{OR-elimination} (\textit{$\lor$-e}) rule of the natural deduction calculus. In particular, why does it rule require two boxes?

43
natural_deduction_propositional_logic/0043_sol.tex

@ -0,0 +1,43 @@
From a given formula $\varphi \lor \psi$, we want to proof some other formula $\chi$.
We only know that $\varphi$ \emph{or} $\psi$ holds. It could be that both of them are true,
but it could also be that only $\psi$ is true, or only $\varphi$ is true.
Sine we don't know which sub-formula is true, we have to give two separate proofs:
\begin{itemize}
\item First box: We assume $\varphi$ is true and need to find a proof for $\chi$.
\item Second box: We assume $\psi$ is true and need to find a proof for $\chi$.
\end{itemize}
Only if we can prove $\chi$ in the first and in the second box, then we can conclude that $\chi$ holds also outside of the box.
The $\ore$ rules says that we can only derive $\chi$ from $ \varphi \lor \psi$ if we can derive $\chi$
from the assumption $ \varphi$ as well as from the assumption $\psi$.
Formally the rule is written as:
\begin{center}
\begin{prooftree}
\AxiomC{\begin{tabular}{l}
\vspace*{0.95ex}\\
\vspace*{0.95ex}\\
$ \varphi \lor \psi $\\
\end{tabular}}
\AxiomC{\begin{tabular}{|l|}
\hline
$ \varphi $ ass.\\
\hspace*{0.2em}$ \vdots $\\
$ \chi $\\
\hline
\end{tabular}}
\AxiomC{\begin{tabular}{|l|}
\hline
$ \psi $ ass.\\
\hspace*{0.2em}$ \vdots $\\
$ \chi $\\
\hline
\end{tabular}}
\RightLabel{$ \ore$}
\TrinaryInfC{$ \chi $}
\end{prooftree}
\end{center}

1
natural_deduction_propositional_logic/0044.tex

@ -0,0 +1 @@
\item \self Explain in your own words, how to proof a sequent in the natural deduction calculus. What steps do you need to take and which tips can be helpful when solving such proofs?

14
natural_deduction_propositional_logic/0044_sol.tex

@ -0,0 +1,14 @@
\begin{itemize}
\item \textbf{Start a proof.} At the top of your page write the premises, at the bottom write the conclusion.
\item \textbf{Work in both directions to fill the gap.} Work from the top to the bottom
by working with the premises, and simultaneously work upwards by using the conclusion.
\item \textbf{Look at the conclusion first.} If the conclusion is of the form $\varphi \rightarrow \psi$, then immediately apply $\impi$.
You still have to fill the gap in the box, but you have an extra assumption to work with and a simpler conclusion you try to reach. Similar, if your conclusion is of fhe form $\neg \varphi$, apply $\negi$ to make your life easier.
\item \textbf{Assumption boxes.} At any time you can introduce a formula as assumption, by choosing a proof rule that opens the box.
The box defines the scope of the assumption. By opening a box you introduce an assumption.
But don't forget, you have to close the box precisely as
defined by the applied proof rule.
\item \textbf{What rule should you apply?} The rules $\impi$ and $\negi$ make your life easier, apply them whenever you can.
There is no easy recipe for when to use the other rules. The best way to get the hang of it is doing many proofs
by yourself.
\end{itemize}

2
natural_deduction_propositional_logic/0045.tex

@ -0,0 +1,2 @@
\item \lect "Natural deduction for propositional logic is \emph{sound} and
\emph{complete}." Explain in your own words what this means.

13
natural_deduction_propositional_logic/0045_sol.tex

@ -0,0 +1,13 @@
\begin{itemize}
\item \emph{Natural deduction for propositional logic is sound. Therefore, any sequent that can be proven is a correct semantic entailment.}
Natural deduction is sound. This means that any sequent $\varphi_1, \varphi_2, \dots \entails \psi$ that is provable states a correct semantic entailment $\varphi_1, \varphi_2, \dots \models \psi$.
%Conversely, if the semantic entailmant relation does not hold for a statement, the according sequent is not provable.
A correct semantic entailment tells us that under all models that satisfy $\varphi_i$ for all $i$ the conclusion $\psi$ evaluates to true.
In short: Anything that is provable by natural deduction is true with respect to semantics.
\item \emph{Natural deduction for propositional logic is complete. Therefore, any sequent that is a correct semantic entailment can be proven.}
Natural deduction is complete. This means that for any statement that is true, i.e. the statement is a correct semantic entailment, there exists a proof.
\end{itemize}

2
natural_deduction_propositional_logic/0046.tex

@ -0,0 +1,2 @@
\item \lect How can you show that a sequent is not valid? Is this a consequence of soundness or completeness. Explain your answer.

7
natural_deduction_propositional_logic/0046_sol.tex

@ -0,0 +1,7 @@
In order to show that a sequent is not valid, we provide a \emph{counter example}, which is a model that satisfies all premises but falsifies the conclusion.
This is a consequence of soundness. We know from the definition of soundness that
$$\varphi_1, \varphi_2,\!..., \varphi_n \nmodels \psi \qquad \Rightarrow \qquad \varphi_1, \varphi_2,\!..., \varphi_n \nvdash \psi$$
A counterexample is enough to tell us that the left-hand side of this implication is true, hence the sequent is not valid.

1
natural_deduction_propositional_logic/0047.tex

@ -0,0 +1 @@
\item \self Explain the \emph{implication-introduction} rule ($\imp$i).

2
natural_deduction_propositional_logic/0048.tex

@ -0,0 +1,2 @@
\item \self Explain the \textit{$\bot$-elimination} rule of the natural deduction
calculus. Why can you deduce a formula $\phi$ from something, that is wrong?

1
natural_deduction_propositional_logic/0049.tex

@ -0,0 +1 @@
\item \self Derive the \textit{Proof-By-Contradiction}-rule from the \textit{$\lnot$-introduction} rule.

2
natural_deduction_propositional_logic/0050.tex

@ -0,0 +1,2 @@
\item \self Explain what it means that natural deduction for propositional logic is \textit{sound}. What is the difference to \emph{completeness}?

1
natural_deduction_propositional_logic/0051.tex

@ -0,0 +1 @@
\item \self Explain what it means that natural deduction for propositional logic is \textit{sound}. What is the difference to \emph{completeness}?

1
natural_deduction_propositional_logic/0052.tex

@ -0,0 +1 @@
\item \self Given an invalid sequent, how do you show its invalidity?

9
natural_deduction_propositional_logic/0053.tex

@ -0,0 +1,9 @@
\item \lect Look at the following statements and tick them if they are true.
\begin{itemize}
\item[$\square$] In a sequent, premises entail a conclusion.
\item[$\square$] In a sequent, conclusions entail a premise.
\item[$\square$] A sequent is valid, independent on whether a proof can be found.
\item[$\square$] A sequent is valid, if a proof for it can be found.
\end{itemize}

9
natural_deduction_propositional_logic/0053_sol.tex

@ -0,0 +1,9 @@
\item \lect Look at the following statements and tick them if they are true.
\begin{itemize}
\item[$\ticked$] In a sequent, premises entail a conclusion.
\item[$\square$] In a sequent, conclusions entail a premise.
\item[$\square$] A sequent is valid, independent on whether a proof can be found.
\item[$\ticked$] A sequent is valid, if a proof for it can be found.
\end{itemize}

9
natural_deduction_propositional_logic/0056.tex

@ -0,0 +1,9 @@
\item \self Look at the following statements and tick them if they are true.
\begin{itemize}
\item[$\square$] Any sequent that is a correct semantic entailment can be proven.
\item[$\square$] Any sequent that can be proven is a correct semantic entailment.
\item[$\square$] If a sequent is not provable, the semantic entailment relation does hold.
\item[$\square$] If for a sequent the semantic entailment relation does not hold, it cannot be proven with natural deduction.
\end{itemize}

27
natural_deduction_propositional_logic/0057.tex

@ -0,0 +1,27 @@
\item \self Natural deduction for propositional logic is sound and
complete. In the following list, mark each statement with either
\textbf{S}, \textbf{C}, \textbf{B}, or \textbf{N}, depending on
whether the corresponding statement follows from
\textbf{S}oundness, \textbf{C}ompleteness, \textbf{B}oth, or
\textbf{N}either.
(Note: If a statement is in itself factually wrong, or has nothing to do with soundness and completeness, mark it
\textbf{N}, since it follows from neither soundness nor completeness.)
\begin{itemize}
\item[\Large{$\square$}] There is no correct sequent for which
there is no proof.
\item[\Large{$\square$}] Every sequent has a proof.
\item[\Large{$\square$}] If all models that satisfy the premise(s)
of a given sequent also satisfy the conclusion of the
sequent, there exists a proof for the sequent.
\item[\Large{$\square$}] A sequent has a proof if and only if it
is semantically correct.
\item[\Large{$\square$}] An incorrect sequent does not have a
proof.
\item[\Large{$\square$}] Every propositional formula is either
valid or not valid.
\item[\Large{$\square$}] If a model satisfies the premise(s) of a
given sequent, but does not satisfy the conclusion of the
sequent, it is not possible to construct a proof for the
sequent.
\end{itemize}

27
natural_deduction_propositional_logic/0058.tex

@ -0,0 +1,27 @@
\item \self Natural deduction for propositional logic is sound and
complete. In the following list, mark each statement with either
\textbf{S}, \textbf{C}, \textbf{B}, or \textbf{N}, depending on
whether the corresponding statement follows from
\textbf{S}oundness, \textbf{C}ompleteness, \textbf{B}oth, or
\textbf{N}either.
(Note: If a statement is in itself factually wrong, or has nothing to do with soundness and completeness, mark it
\textbf{N}, since it follows from neither soundness nor completeness.)
\begin{itemize}
\item[\Large{$\square$}] A sequent has a proof if and only if it
is semantically correct.
\item[\Large{$\square$}] If a model satisfies the premise(s) of a
given sequent, but does not satisfy the conclusion of the
sequent, it is not possible to construct a proof for the
sequent.
\item[\Large{$\square$}] There is no correct sequent for which
there is no proof.
\item[\Large{$\square$}] Every sequent has a proof.
\item[\Large{$\square$}] An incorrect sequent does not have a
proof.
\item[\Large{$\square$}] Every propositional formula is either
valid or not valid.
\item[\Large{$\square$}] If all models that satisfy the premise(s)
of a given sequent also satisfy the conclusion of the
sequent, there exists a proof for the sequent.
\end{itemize}

1
natural_deduction_propositional_logic/0059.tex

@ -0,0 +1 @@
\item \self $(p \imp (q \imp r)) \land (q \imp (r \imp s)) \ent p \imp (q \imp s)$

19
natural_deduction_propositional_logic/0059_sol.tex

@ -0,0 +1,19 @@
This sequent is provable.
\begin{logicproof}{2}
(p \imp (q \imp r)) \land (q \imp (r \imp s)) & \prem \\
\begin{subproof}
p & \assum \\
p \imp (q \imp r) & $\ande{1} 1$ \\
q \imp (r \imp s) & $\ande{2} 1$ \\
q \imp r & $\impe 2,3$ \\
\begin{subproof}
q & \assum \\
r & $\impe 5,6$\\
r \imp s & $\impe 4,6$\\
s & $\impe 7,8$
\end{subproof}
q \imp s & $\impi 6-9$
\end{subproof}
p \imp (q \imp s) & $\impi 2-10$
\end{logicproof}

Some files were not shown because too many files changed in this diff

Loading…
Cancel
Save