|
|
@ -1,18 +1,15 @@ |
|
|
|
This sequent is not provable. |
|
|
|
|
|
|
|
\begin{logicproof}{2} |
|
|
|
\exists x \; (Q(x) \imp R(x)) &\prem \\ |
|
|
|
\exists x \; (P(x)\land Q(x)) &\prem \\ |
|
|
|
\begin{subproof} |
|
|
|
Q(x_0) \imp R(x_0) &\assum~\freshVar{$x_0$} \\ |
|
|
|
\begin{subproof} |
|
|
|
P(x_0) \land Q(x_0) &\assum~\freshVar{$x_0$}\\ |
|
|
|
P(x_0) &\ande{1} 4\\ |
|
|
|
Q(x_0) &\ande{2} 4\\ |
|
|
|
R(x_0) &\impe 5,3\\ |
|
|
|
P(x_0) \land R(x_0) & \andi 5,7\\ |
|
|
|
\exists x (P(x) \land R(x)) & \existi 8 |
|
|
|
\end{subproof} |
|
|
|
\exists x \; (P(x) \land R(x)) & \existe 2,4-9 |
|
|
|
\end{subproof} |
|
|
|
\exists x \; (P(x) \land R(x)) & \existe 1,3-10 |
|
|
|
\end{logicproof} |
|
|
|
Model $\mathcal{M}$:\\ |
|
|
|
\begin{minipage}{0.2\textwidth} |
|
|
|
\begin{align*} |
|
|
|
\mathcal{A} =& \; \{ a, b \}\\ |
|
|
|
P^\mathcal{M} =& \; \{ a\} \\ |
|
|
|
Q^\mathcal{M} =& \; \{ a\} \\ |
|
|
|
R^\mathcal{M} =& \; \{ \} |
|
|
|
\end{align*} |
|
|
|
\end{minipage}\\ |
|
|
|
|
|
|
|
$\mathcal{M} \models \exists x (Q(x) \imp R(x))$\\ |
|
|
|
$\mathcal{M} \models \exists x (P(x) \land Q(x))$\\ |
|
|
|
$\mathcal{M} \nmodels \exists x (P(x) \land R(x))$ |