Browse Source

fixed ndpred 1004 sol

main
sp 5 months ago
parent
commit
3a5cb93094
  1. 31
      natural_deduction_predicate_logic/1004_sol.tex

31
natural_deduction_predicate_logic/1004_sol.tex

@ -1,18 +1,15 @@
This sequent is not provable.
\begin{logicproof}{2}
\exists x \; (Q(x) \imp R(x)) &\prem \\
\exists x \; (P(x)\land Q(x)) &\prem \\
\begin{subproof}
Q(x_0) \imp R(x_0) &\assum~\freshVar{$x_0$} \\
\begin{subproof}
P(x_0) \land Q(x_0) &\assum~\freshVar{$x_0$}\\
P(x_0) &\ande{1} 4\\
Q(x_0) &\ande{2} 4\\
R(x_0) &\impe 5,3\\
P(x_0) \land R(x_0) & \andi 5,7\\
\exists x (P(x) \land R(x)) & \existi 8
\end{subproof}
\exists x \; (P(x) \land R(x)) & \existe 2,4-9
\end{subproof}
\exists x \; (P(x) \land R(x)) & \existe 1,3-10
\end{logicproof}
Model $\mathcal{M}$:\\
\begin{minipage}{0.2\textwidth}
\begin{align*}
\mathcal{A} =& \; \{ a, b \}\\
P^\mathcal{M} =& \; \{ a\} \\
Q^\mathcal{M} =& \; \{ a\} \\
R^\mathcal{M} =& \; \{ \}
\end{align*}
\end{minipage}\\
$\mathcal{M} \models \exists x (Q(x) \imp R(x))$\\
$\mathcal{M} \models \exists x (P(x) \land Q(x))$\\
$\mathcal{M} \nmodels \exists x (P(x) \land R(x))$
Loading…
Cancel
Save