Browse Source

release symbenc

main
sp 1 month ago
parent
commit
2e0274e4d5
  1. 2
      compile
  2. 6
      symbolic_encoding/0001.tex
  3. 29
      symbolic_encoding/0001_sol.tex
  4. 38
      symbolic_encoding/0002.tex
  5. 44
      symbolic_encoding/0002_sol.tex
  6. 1
      symbolic_encoding/0003.tex
  7. 6
      symbolic_encoding/0003_sol.tex
  8. 2
      symbolic_encoding/0004.tex
  9. 6
      symbolic_encoding/0004_sol.tex
  10. 24
      symbolic_encoding/0005.tex
  11. 13
      symbolic_encoding/0005_sol.tex
  12. 24
      symbolic_encoding/0006.tex
  13. 15
      symbolic_encoding/0006_sol.tex
  14. 39
      symbolic_encoding/0007.tex
  15. 7
      symbolic_encoding/0007_sol.tex
  16. 9
      symbolic_encoding/0008.tex
  17. 4
      symbolic_encoding/0008_sol.tex
  18. 17
      symbolic_encoding/1000.tex
  19. 8
      symbolic_encoding/1001.tex
  20. 1
      symbolic_encoding/1002.tex
  21. 2
      symbolic_encoding/1003.tex
  22. 25
      symbolic_encoding/1004.tex
  23. 25
      symbolic_encoding/1005.tex
  24. 25
      symbolic_encoding/1006.tex
  25. 7
      symbolic_encoding/1007.tex
  26. 7
      symbolic_encoding/1008.tex
  27. 3
      symbolic_encoding/1009.tex
  28. 17
      symbolic_encoding/1010.tex
  29. 1
      symbolic_encoding/1011.tex
  30. 15
      symbolic_encoding/1012.tex
  31. 36
      symbolic_encoding/1013.tex
  32. 41
      symbolic_encoding/1014.tex
  33. 14
      symbolic_encoding/1015.tex
  34. 15
      symbolic_encoding/1016.tex
  35. 15
      symbolic_encoding/1017.tex
  36. 4
      symbolic_encoding/1018.tex
  37. 5
      symbolic_encoding/1019.tex
  38. 3
      symbolic_encoding/1020.tex
  39. 2
      symbolic_encoding/1021.tex
  40. 8
      symbolic_encoding/multiple_choice/2_1_symbrep_lect.tex
  41. 8
      symbolic_encoding/multiple_choice/2_1_symbrep_self.tex
  42. 8
      symbolic_encoding/practical_questions/1_10_kripke_self.tex
  43. 4
      symbolic_encoding/practical_questions/1_1_kripke_lect.tex
  44. 29
      symbolic_encoding/practical_questions/1_1_kripke_lect_sol.tex
  45. 5
      symbolic_encoding/practical_questions/1_1_kripke_self.tex
  46. 1
      symbolic_encoding/practical_questions/1_1_symbrep.tex
  47. 1
      symbolic_encoding/practical_questions/1_1_symbrep_self.tex
  48. 38
      symbolic_encoding/practical_questions/1_2_kripke_lect.tex
  49. 44
      symbolic_encoding/practical_questions/1_2_kripke_lect_sol.tex
  50. 25
      symbolic_encoding/practical_questions/1_2_kripke_self.tex
  51. 2
      symbolic_encoding/practical_questions/1_2_symbrep_self.tex
  52. 25
      symbolic_encoding/practical_questions/1_3_kripke_self.tex
  53. 25
      symbolic_encoding/practical_questions/1_4_kripke_self.tex
  54. 32
      symbolic_encoding/practical_questions/2_05_symbrep_self.tex
  55. 39
      symbolic_encoding/practical_questions/2_10_symbrep_lect.tex
  56. 7
      symbolic_encoding/practical_questions/2_10_symbrep_lect_sol.tex
  57. 1
      symbolic_encoding/practical_questions/2_10_symbrep_self.tex
  58. 9
      symbolic_encoding/practical_questions/2_11_symbrep_lect.tex
  59. 4
      symbolic_encoding/practical_questions/2_11_symbrep_lect_sol.tex
  60. 21
      symbolic_encoding/practical_questions/2_11_symbrep_self.tex
  61. 7
      symbolic_encoding/practical_questions/2_12_symbrep_lect.tex
  62. 15
      symbolic_encoding/practical_questions/2_12_symbrep_self.tex
  63. 24
      symbolic_encoding/practical_questions/2_13_symbrep_lect.tex
  64. 15
      symbolic_encoding/practical_questions/2_13_symbrep_lect_sol.tex
  65. 15
      symbolic_encoding/practical_questions/2_13_symbrep_self.tex
  66. 33
      symbolic_encoding/practical_questions/2_17_symbrep_self.tex
  67. 7
      symbolic_encoding/practical_questions/2_18_symbrep_self.tex
  68. 1
      symbolic_encoding/practical_questions/2_1_symbrep_lect.tex
  69. 6
      symbolic_encoding/practical_questions/2_1_symbrep_lect_sol.tex
  70. 7
      symbolic_encoding/practical_questions/2_1_symbrep_self.tex
  71. 9
      symbolic_encoding/practical_questions/2_20_symbrep_self.tex
  72. 2
      symbolic_encoding/practical_questions/2_2_symbrep_lect.tex
  73. 6
      symbolic_encoding/practical_questions/2_2_symbrep_lect_sol.tex
  74. 8
      symbolic_encoding/practical_questions/2_2_symbrep_self.tex
  75. 40
      symbolic_encoding/practical_questions/2_3_symbrep_lect.tex
  76. 48
      symbolic_encoding/practical_questions/2_3_symbrep_self.tex
  77. 15
      symbolic_encoding/practical_questions/2_4_symbrep_lect.tex
  78. 17
      symbolic_encoding/practical_questions/2_4_symbrep_self.tex
  79. 36
      symbolic_encoding/practical_questions/2_5_symbrep_self.tex
  80. 2
      symbolic_encoding/practical_questions/2_6_symbrep_lect.tex
  81. 41
      symbolic_encoding/practical_questions/2_6_symbrep_self.tex
  82. 14
      symbolic_encoding/practical_questions/2_7_symbrep_lect.tex
  83. 37
      symbolic_encoding/practical_questions/2_7_symbrep_self.tex
  84. 1
      symbolic_encoding/practical_questions/2_8_symbrep_self.tex
  85. 24
      symbolic_encoding/practical_questions/2_9_symbrep_lect.tex
  86. 13
      symbolic_encoding/practical_questions/2_9_symbrep_lect_sol.tex
  87. 3
      symbolic_encoding/practical_questions/2_9_symbrep_self.tex
  88. 128
      symbolic_encoding/symbolic_encoding.tex
  89. 1
      symbolic_encoding/theory_questions/0_1_symb_lect.tex
  90. 1
      symbolic_encoding/theory_questions/0_1_symb_self.tex
  91. 2
      symbolic_encoding/theory_questions/1_0_kripke_self.tex
  92. 3
      symbolic_encoding/theory_questions/2_01_symbrep_self.tex
  93. 1
      symbolic_encoding/theory_questions/2_1_symbrep_self.tex
  94. 4
      symbolic_encoding/theory_questions/2_2_symbrep_self.tex
  95. 1
      symbolic_encoding/theory_questions/2_3_symbrep_lect.tex
  96. 5
      symbolic_encoding/theory_questions/2_3_symbrep_self.tex

2
compile

@ -102,7 +102,7 @@ compile_wrapper() {
compile_chapter() {
#for chapter in smtzthree proplogic satsolver ndpred predlogic ndpred smt bdd eqchecking symbenc temporal
for chapter in smt
for chapter in symbenc
do
set_chapter "\\chapter${chapter}true"
compile_wrapper "$chapter" "$@"

6
symbolic_encoding/0001.tex

@ -0,0 +1,6 @@
\item \lect Draw the graph for the \emph{transition system} $\mathcal{T}$ with:
\begin{itemize}[itemsep=-0.9em, leftmargin=0.8em]
\item $S = \{s_1, s_2, s_3, s_4\}, $\\
\item $S_0 = \{s_2\}, $\\
\item $R = \{\{s_1, s_2\}, \{s_1, s_1\}, \{s_2, s_4\}, \{s_2, s_3\}, \{s_3, s_1\}, \{s_4, s_2\}, \{s_4, s_3\}\}, $
\end{itemize}

29
symbolic_encoding/0001_sol.tex

@ -0,0 +1,29 @@
\begin{center}
\begin{tikzpicture}[scale=0.2]
\tikzstyle{every node}+=[inner sep=0pt]
\draw [black] (11,-26.9) circle (3);
\draw (11,-26.9) node {$s_2$};
\draw [black] (23.6,-15) circle (3);
\draw (23.6,-15) node {$s_1$};
\draw [black] (23.6,-38) circle (3);
\draw (23.6,-38) node {$s_4$};
\draw [black] (36.7,-26.9) circle (3);
\draw (36.7,-26.9) node {$s_3$};
\draw [black] (21.42,-17.06) -- (13.18,-24.84);
\fill [black] (13.18,-24.84) -- (14.11,-24.65) -- (13.42,-23.93);
\draw [black] (3.7,-26.9) -- (8,-26.9);
\fill [black] (8,-26.9) -- (7.2,-26.4) -- (7.2,-27.4);
\draw [black] (25.89,-36.06) -- (34.41,-28.84);
\fill [black] (34.41,-28.84) -- (33.48,-28.98) -- (34.12,-29.74);
\draw [black] (34.48,-24.88) -- (25.82,-17.02);
\fill [black] (25.82,-17.02) -- (26.08,-17.93) -- (26.75,-17.18);
\draw [black] (14,-26.9) -- (33.7,-26.9);
\fill [black] (33.7,-26.9) -- (32.9,-26.4) -- (32.9,-27.4);
\draw [black] (21.35,-36.02) -- (13.25,-28.88);
\fill [black] (13.25,-28.88) -- (13.52,-29.79) -- (14.18,-29.04);
\draw [black] (13.25,-28.88) -- (21.35,-36.02);
\fill [black] (21.35,-36.02) -- (21.08,-35.11) -- (20.42,-35.86);
\draw [black] (25.456,-12.658) arc (169.34618:-118.65382:2.25);
\fill [black] (26.59,-15.05) -- (27.28,-15.69) -- (27.47,-14.7);
\end{tikzpicture}
\end{center}

38
symbolic_encoding/0002.tex

@ -0,0 +1,38 @@
\item \lect
Consider the example of an elevator.
Initially, the elevator is in the ground floor.
From the ground floor, it can either go basement, stay there for a while,
and then go back to the ground floor, or it can go from the ground floor
to the second floor, stay there for a while, and go back to the ground floor.
While traveling between ground floor to second floor, the elevator passes the first floor, but it cannot stop there.
Model this elevator as \emph{transition system}.
\iffalse
\item \lect
Given the following graph representation of a \textit{transition system}, state the contents of the sets $S, S_0 and R$
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=20pt}]
\node[node] (s0) {$s0$};
\node (s0s2) [below= 1cm of s0] {};
\node[node] (s1) [right of=s0s2] {$s1$};
\node[node] (s2) [below of=s0] {$s2$};
\node (start1) [left=1cm of s0] {};
\path[->] (start1) edge (s0);
\path[->] (s1) edge (s0);
\path[->] (s0) edge [bend left] (s2);
\path[->] (s2) edge (s1);
\path[->] (s2) edge [bend left] (s0);
\path[->] (s0.30) edge[bend right=90, looseness=15, out=240, in=300] (s0.60);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
\end{tikzpicture}
\end{center}
\fi

44
symbolic_encoding/0002_sol.tex

@ -0,0 +1,44 @@
We use the following states:
%ground floor, basement,second floor, passing ground floor
\begin{itemize}
\item $s_g$ indicates that the elevator is on the ground floor.
\item $s_b$ indicates that the elevator is in the basement.
\item $s_s$ indicates that the elevator is on the second floor.
\item $s_f$ indicates that the elevator is passing the first floor.
\end{itemize}
The transition system is then given by: $\mathcal{T}$ = ($S$, $S_0$, $R$) with $S$ = $\{s_g, s_b, s_s, s_f\}$, $S_0$ = $\{s_g\}$, $R$ = $\{(s_g, s_g), (s_g, s_b), (s_b, s_b), (s_b, s_g), (s_g, s_f), (s_f, s_s), (s_s, s_s), (s_s, s_f), (s_f, s_g)\}$\\
\begin{center}
\begin{tikzpicture}[scale=0.2]
\tikzstyle{every node}+=[inner sep=0pt]
\draw [black] (13.9,-26) circle (3);
\draw (13.9,-26) node {$s_g$};
\draw [black] (27.8,-35.6) circle (3);
\draw (27.8,-35.6) node {$s_b$};
\draw [black] (27.8,-26) circle (3);
\draw (27.8,-26) node {$s_f$};
\draw [black] (27.8,-15.8) circle (3);
\draw (27.8,-15.8) node {$s_s$};
\draw [black] (4.8,-26) -- (10.9,-26);
\fill [black] (10.9,-26) -- (10.1,-25.5) -- (10.1,-26.5);
\draw [black] (11.501,-24.218) arc (261.13116:-26.86884:2.25);
\fill [black] (13.85,-23.01) -- (14.47,-22.3) -- (13.48,-22.14);
\draw [black] (16.37,-27.7) -- (25.33,-33.9);
\fill [black] (25.33,-33.9) -- (24.96,-33.03) -- (24.39,-33.85);
\draw [black] (26.957,-38.467) arc (11.34364:-276.65636:2.25);
\fill [black] (25.01,-36.67) -- (24.13,-36.34) -- (24.33,-37.32);
\draw [black] (25.33,-33.9) -- (16.37,-27.7);
\fill [black] (16.37,-27.7) -- (16.74,-28.57) -- (17.31,-27.75);
\draw [black] (16.9,-26) -- (24.8,-26);
\fill [black] (24.8,-26) -- (24,-25.5) -- (24,-26.5);
\draw [black] (27.8,-23) -- (27.8,-18.8);
\fill [black] (27.8,-18.8) -- (27.3,-19.6) -- (28.3,-19.6);
\draw [black] (28.483,-12.891) arc (194.52895:-93.47105:2.25);
\fill [black] (30.52,-14.57) -- (31.42,-14.86) -- (31.17,-13.89);
\draw [black] (27.8,-18.8) -- (27.8,-23);
\fill [black] (27.8,-23) -- (28.3,-22.2) -- (27.3,-22.2);
\draw [black] (24.8,-26) -- (16.9,-26);
\fill [black] (16.9,-26) -- (17.7,-26.5) -- (17.7,-25.5);
\end{tikzpicture}
\end{center}

1
symbolic_encoding/0003.tex

@ -0,0 +1 @@
\item \lect Given a state space of size $|S| = 2^4 = 16$, give the symbolic encoding for the following states: (a) $s_{7}$, (b) $s_{15}$, and (c) $s_{10}$.

6
symbolic_encoding/0003_sol.tex

@ -0,0 +1,6 @@
For the symbolic encoding we need 4 Boolean variables, \{$v_3$, . . . , $v_0$\}.
Let $v_3$ be the most significant bit, and $v_0$ the least significant bit.\\
(a) $s_{7}$ = $\lnot v_3 \land v_2 \land v_1 \land v_0$\\
(b) $s_{15}$ = $v_3 \land v_2 \land v_1 \land v_0$\\
(c) $s_{10}$ = $v_3 \land \lnot v_2 \land v_1 \land \lnot v_0$

2
symbolic_encoding/0004.tex

@ -0,0 +1,2 @@
\item \lect Given is the set of states $S=\{s_0,\dots,s_7\}$.
Find formulas in propositional logic that symbolically represent the sets $A = \{s_7, s_6,s_3, s_2 \}$, $B=\{s_1, s_3,s_5, s_7\}$, and $C=\{s_7, s_6,s_0, s_1\}$.

6
symbolic_encoding/0004_sol.tex

@ -0,0 +1,6 @@
$A = \{s_7, s_6,s_3, s_2 \}$ = $(v_2 \land v_1 \land v_0) \lor (v_2 \land v_1 \land \lnot v_0) \lor (\lnot v_2 \land v_1 \land v_0) \lor (\lnot v_2 \land v_1 \land \lnot v_0)$\\
\hspace*{0,34cm} = $v_1$\\\\
$B=\{s_1, s_3,s_5, s_7\}$ = $(\lnot v_2 \land \lnot v_1 \land v_0) \lor (\lnot v_2 \land v_1 \land v_0) \lor (v_2 \land \lnot v_1 \land v_0) \lor (v_2 \land v_1 \land v_0)$\\
\hspace*{0,34cm} = $v_0$\\\\
$C=\{s_7, s_6,s_0, s_1\}$ = $(v_2 \land v_1 \land v_0) \lor (v_2 \land v_1 \land \lnot v_0) \lor (\lnot v_2 \land \lnot v_1 \land \lnot v_0) \lor (\lnot v_2 \land \lnot v_1 \land v_0)$ \\
\hspace*{0,34cm} = $(v_2 \land v_1) \lor (\lnot v_2 \land \lnot v_1)$

24
symbolic_encoding/0005.tex

@ -0,0 +1,24 @@
\item \lect Find a \textit{symbolic encoding} for the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v_1 \land \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
%\path[<->] (s0) edge (s1);
\path[->] (s0) edge (s2);
\path[<-] (s0) edge (s3);
%\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
\path[<-] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
%\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
%\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
% \path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

13
symbolic_encoding/0005_sol.tex

@ -0,0 +1,13 @@
Using the variables $v_1$ and $v_0$, we can define the transition relation using the following formula:\\
\begin{center}
$\lnot v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor v'_1 \land \lnot v'_0) \ \lor$\\
$\lnot v_1 \land v_0 \land v'_1 \land v'_0 \ \lor$\\
$v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor \lnot v'_1 \land \lnot v'_0 \lor v'_1 \land \lnot v'_0)$\\
\end{center}
We can further simplify the formula to:
\begin{center}
$\lnot v_1 \land \lnot v_0 \land \lnot v'_0 \ \lor$\\
$\lnot v_1 \land v_0 \land v'_1 \land v'_0 \ \lor$\\
$v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor \lnot v'_0)$\\
\end{center}

24
symbolic_encoding/0006.tex

@ -0,0 +1,24 @@
\item \lect Find a \textit{symbolic encoding} for the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v_1 \land \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
\path[->] (s0) edge (s1);
\path[<->] (s0) edge (s2);
\path[<->] (s0) edge (s3);
\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
\path[<->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
%\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

15
symbolic_encoding/0006_sol.tex

@ -0,0 +1,15 @@
Using the variables $v_1$ and $v_0$, we can define the transition relation using the following formula:\\
\begin{center}
$\lnot v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$\lnot v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0)$
\end{center}
We can further simplify the formula to:
\begin{center}
$\lnot v_1 \land \lnot v_0 \lor$\\
$\lnot v_1 \land v_0 \land (v'_0 \lor v'_1 \land \lnot v'_0) \ \lor$\\
$v_1 \land \lnot v_0 \land (\lnot v'_1 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land v_0$
\end{center}

39
symbolic_encoding/0007.tex

@ -0,0 +1,39 @@
\item \lect
Consider the domain $A=\{Spain, France, Italy, Germany\}$ and
the two different symbolic encodings for $A$ given below.
Which one gives a shorter symbolic representation for the set
$B=\{France, Germany\}$? Illustrate your answer by giving the
representing formulas for $B$ in both encodings.
\vspace{.5cm}
% \begin{minipage}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 1}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $0$ & $1$ \\
Germany & $1$ & $1$
\end{tabular}
%\end{minipage}
%\begin{minipage}
\hspace{3cm}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 2}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $1$ & $1$ \\
Germany & $0$ & $1$
\end{tabular}
%\end{minipage}

7
symbolic_encoding/0007_sol.tex

@ -0,0 +1,7 @@
Using encoding 1, we end up in the following formula:\\
$b = v_1$\\\\
Using encoding 2, we end up in the following formula:\\
$b = (v_1 \land \lnot v_0) \lor (\lnot v_1 \land v_0)$\\
Encoding 1 gives a shorter symbolic representation
for the set $B=\{France, Germany\}$.

9
symbolic_encoding/0008.tex

@ -0,0 +1,9 @@
\item \lect
Find a symbolic binary encoding for $X = \{ 0,1, \ldots, 31 \}$.
Use it to find formulas that symbolically represent the sets $A$ and $B$ and simplify the formulas:
\begin{itemize}
\item $A =\{ 12, 13, 14, 15, 28, 29, 30, 31 \}$
\item $B =\{x \in X \mid 0 \leq x \leq 15\}$
\end{itemize}
Furthermore, give the formulas representing the sets
$C=A\cap B$ and $D = A \cup B$.

4
symbolic_encoding/0008_sol.tex

@ -0,0 +1,4 @@
We use 5 Boolean variables, \{$v_4$, . . . , $v_0$\}, for the encoding.\\
$A = (v_2 \land v_3)$\\
$B = \lnot v_4$

17
symbolic_encoding/1000.tex

@ -0,0 +1,17 @@
\item \self
Listed are the participants of a seminar as well as their choice of snacks. Find a symbolic encodings for the participants.
For for this encoding, give the symbolic representation of the set $B$ of all participants that ordered \emph{bananas}, and the set $C$ of all participants that ordered cake.
\begin{tabular}{l|l}
Name & Snack \\
\hline
Alice & banana \\
Bob & cake \\
Carl & banana \\
David & banana \\
Eve & cake \\
Frank & cake \\
Greg & orange \\
Hank & cake \\
\end{tabular}

8
symbolic_encoding/1001.tex

@ -0,0 +1,8 @@
\item \self
Consider the example of a controller for a lamp.
Initially the light is off. Pressing the button once turns on the light and the light glows white. From this state, any short-lasting pressure of the button causes the light to switch its color randomly between white, red, green, blue, and yellow.
At any state, pressing the button for a longer time turns the light off.
Model the lamp controller as \emph{transition system}.

1
symbolic_encoding/1002.tex

@ -0,0 +1 @@
\item \self Given a state space of size $|S| = 2^4 = 16$. Give the symbolic encoding for the following states: (a) $s_{4}$, (b) $s_{9}$, and (c) $s_{13}$.

2
symbolic_encoding/1003.tex

@ -0,0 +1,2 @@
\item \self Given is the set of states $S=\{s_0,\dots,s_7\}$.
Find formulas in propositional logic that symbolically represent the sets $A = \{s_0, s_2,s_4, s_6 \}$, $B=\{s_0, s_1,s_2, s_3\}$, and $C=\{s_7, s_1\}$.

25
symbolic_encoding/1004.tex

@ -0,0 +1,25 @@
\item \self
Find a \textit{symbolic encoding} for the set of initial states and the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
%\path[->] (s0) edge (s1);
\path[->] (s0) edge (s2);
\path[->] (s0) edge (s3);
\path[->] (s1) edge (s2);
\path[->] (s1) edge (s3);
%\path[->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
%\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
%\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
%\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

25
symbolic_encoding/1005.tex

@ -0,0 +1,25 @@
\item \self
Find a \textit{symbolic encoding} for the set of initial states and the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
\path[<->] (s0) edge (s1);
\path[<->] (s0) edge (s2);
\path[<->] (s0) edge (s3);
\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
%\path[<->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

25
symbolic_encoding/1006.tex

@ -0,0 +1,25 @@
\item \self
Find a \textit{symbolic encoding} for the set of initial states and the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
\path[<->] (s0) edge (s2);
%\path[<->] (s0) edge (s2);
%\path[<->] (s0) edge (s3);
%\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
%\path[<->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

7
symbolic_encoding/1007.tex

@ -0,0 +1,7 @@
\item \self Define the \textit{transition system} from the following symbolically encoded transition relations and draw the
corresponding graph:
\begin{align*}
(v_1 \land v_0 \land \lnot v'_1 \land \neg v'_0) & \enspace \lor \\
(\neg v_1 \land v_0 \land \lnot v'_1 \land v'_0) & \enspace \lor \\
(v_1 \land v_0 \land v'_1 \land v'_0) &
\end{align*}

7
symbolic_encoding/1008.tex

@ -0,0 +1,7 @@
\item \self Define the \textit{transition system} from the following symbolically encoded transition relations and draw the
corresponding graph:
\begin{align*}
(\lnot v_1 \land \lnot v_0 \land v'_1 \land v'_0) & \enspace \lor \\
(\neg v_1 \land v_0 \land \lnot v'_1 \land \lnot v'_0) & \enspace \lor \\
(\lnot v_1 \land \lnot v_0 \land \lnot v'_1 \land \lnot v'_0) &
\end{align*}

3
symbolic_encoding/1009.tex

@ -0,0 +1,3 @@
\item \self What is the main advantage of symbolic set operations over
non-symbolic operations that enumerate all set elements
explicitly?

17
symbolic_encoding/1010.tex

@ -0,0 +1,17 @@
\item \self
Listed are the participants of a seminar as well as their choice of snacks. Find a symbolic encodings for the participants.
For for this encoding, give the symbolic representation of the set $B$ of all participants that ordered \emph{bananas}, and the set $C$ of all participants that ordered cake.
\begin{tabular}{l|l}
Name & Snack \\
\hline
Alice & banana \\
Bob & cake \\
Carl & banana \\
David & banana \\
Eve & cake \\
Frank & cake \\
Greg & orange \\
Hank & cake \\
\end{tabular}

1
symbolic_encoding/1011.tex

@ -0,0 +1 @@
\item \self Given a state space of size $|S| = 2048$, find a symbolic binary encoding for this state space and compute the characteristic function for the sets of states $$B = \{s_0, s_1, s_2, ..., s_{1023}\} \enspace \text{and} \enspace C = \{s_{512}, s_{513},, s_{514}, ..., s_{1535}.\}$$ Then compute the characteristic function for the sets $D = B \cup C$ and $E = B \setminus C$. If possible, simplify the formulas.

15
symbolic_encoding/1012.tex

@ -0,0 +1,15 @@
\item \self The following table shows eight students and their means of transportation. Find a symbolic encodings representing the list of students.
For this encoding, give the symbolic representation of the set $B$ of all students that go by \emph{bike}, and the set $C$ of all students that go by \emph{car}.
\begin{tabular}{l|l}
Name & Transportation \\
\hline
Alice & Car \\
Bob & Bike \\
Carl & Tram \\
David & Bike \\
Eve & Tram \\
Frank & Bike \\
Greg & Tram \\
Hank & Bike \\
\end{tabular}

36
symbolic_encoding/1013.tex

@ -0,0 +1,36 @@
\item \self
Consider the domain $A=\{Spain, France, Italy, Germany\}$ and
the two different symbolic encodings for $A$ given below.
Which one gives a shorter symbolic representation for the set
$B=\{France, Italy\}$? Illustrate your answer by giving the
representing formulas for $B$ in both encodings.
\vspace{.5cm}
% \begin{minipage}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 1}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $0$ & $1$ \\
Germany & $1$ & $1$
\end{tabular}
%\end{minipage}
%\begin{minipage}
\hspace{3cm}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 2}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $1$ & $1$ \\
Germany & $0$ & $1$
\end{tabular}
%\end{minipage}

41
symbolic_encoding/1014.tex

@ -0,0 +1,41 @@
\item \self Consider the following set operations and relations between
two sets $X$ and $Y$, and an element $a$:
\begin{enumerate}
\item Union: $X \cup Y$
\item Intersection: $X \cap Y$
\item Set Difference: $X \setminus Y$
\item Containment: $a \in X$?
\item Subset: $X \subseteq Y$?
\item Strict Subset: $X \subset Y$?
\item Emptiness: $X=\emptyset$?
\item Equality: $X=Y$?
\end{enumerate}
Let $x$ and $y$ be the symbolic representations of $X$ and $Y$
respectively, and let $\alpha$ be the symbolic encoding of element
$a$. For each of the following items, state which of the above
operations is performed, or which of the above questions is answered.
Write the letters of the corresponding operation/question into the
boxes of the items below. Note that some of the items below do not
perform any of the above operations or answer any of the above
questions. Put a ``--'' in the box of these items. Also note that
some of the items below might do the same computation or answer the
same question.
\begin{itemize}
\item[\Huge{$\square$}] $\neg x \vee y$
\item[\Huge{$\square$}] $x \wedge y$
\item[\Huge{$\square$}] $x\equiv \top$?
\item[\Huge{$\square$}] $x\equiv y$?
\item[\Huge{$\square$}] $(x \rightarrow y) \wedge (y \rightarrow
x)$?
\item[\Huge{$\square$}] $x\equiv \bot$?
\item[\Huge{$\square$}] $y \wedge \neg x$
\item[\Huge{$\square$}] $x \rightarrow \bot$?
\item[\Huge{$\square$}] $\alpha \models x$?
\item[\Huge{$\square$}] $\alpha \models \neg x$?
\item[\Huge{$\square$}] $\neg \alpha \models x$?
\item[\Huge{$\square$}] $x \rightarrow \alpha$?
\item[\Huge{$\square$}] $y \rightarrow x$?
\item[\Huge{$\square$}] $x \rightarrow y$?
\item[\Huge{$\square$}] $(x \rightarrow y) \wedge (x\not \equiv
y)$?
\end{itemize}

14
symbolic_encoding/1015.tex

@ -0,0 +1,14 @@
\item \self Find a symbolic binary encoding for
$X = \{ 0,1, \ldots, 31 \}$.
Use it to compute formulas in propositional logic that symbolically represent the following sets.
\begin{itemize}
\item $B =\{4, 5, 12, 13, 20, 21, 28, 29 \}$
\item $C =\{1, 2, 13, 14 \}$
\end{itemize}
Compute the characteristic functions of the following sets by symbolic operations, using your results from before.
\begin{enumerate}
\item $D = B \cup C$
\item $E = X \setminus D$
\end{enumerate}

15
symbolic_encoding/1016.tex

@ -0,0 +1,15 @@
\item \self Find a symbolic binary encoding for
$X = \{ 0,1, \ldots, 31 \}$.
Use it to compute formulas in propositional logic that symbolically represent the following sets.
\begin{itemize}
\item $B =\{x \in X \mid \text{x is even}\}$
\item $C =\{x \in X \mid \text{x is odd}\}$
\item $D =\{0,1,2,3,4,5,6,7\}$
\end{itemize}
Compute the characteristic functions of the following sets by symbolic operations, using your results from before.
\begin{enumerate}
\item $E = B \cup D$
\item $F = C \cap E$
\item $G = E \setminus F$
\end{enumerate}

15
symbolic_encoding/1017.tex

@ -0,0 +1,15 @@
\item \self Find a symbolic binary encoding for
$X = \{ 0,1, \ldots, 31 \}$.
Use it to compute formulas in propositional logic that symbolically represent the following sets.
\begin{itemize}
\item $B =\{8, 9, 10, 11, 12, 13, 14, 15\}$
\item $C =\{x \in X \mid 0 \leq x \leq 15\}$
\end{itemize}
Compute the characteristic functions of the following sets by symbolic operations, using your results from before.
\begin{enumerate}
\item $D = B \cup C$
\item $E = B \cap C$
\item $F = C \setminus B$
\end{enumerate}

4
symbolic_encoding/1018.tex

@ -0,0 +1,4 @@
\item \self Assume you are given the formulas $a$ and
$b$, which symbolically represent the sets $A$ and $B$,
respectively. Give the formula
$c$, which symbolically represents the set $C= A \setminus B$.

5
symbolic_encoding/1019.tex

@ -0,0 +1,5 @@
\item \self Assume you are given the formulas $a$ and
$b$, which symbolically represent the sets $A$ and $B$,
respectively. What would you have to check on $a, b$ to test
whether or not $A$ is a strict subset of $B$, i.e., $A \subset
B$?

3
symbolic_encoding/1020.tex

@ -0,0 +1,3 @@
\item \self Given a state space of size $|S| = 64$. Find a symbolic binary encoding for this state space and compute the formulas that symbolically represent the sets $$B = \{s_{32}, s_{33}, s_{34}, ..., s_{63}\} \enspace \text{and} \enspace C = \{s_{16}, s_{17},, s_{18}, ..., s_{40}\}.$$
Following, compute the formulas that represent the sets $D = B \cap C$, $E = B \cup C$, $F = B \setminus C$ and $G = C \setminus B$.

2
symbolic_encoding/1021.tex

@ -0,0 +1,2 @@
\item \self
Given a state space of size $|S| = 64$, find a symbolic binary encoding for this state space and compute the formulas that symbolically represent the sets of states $$B = \{s_{16}, s_{17}, s_{18}, ..., s_{32}\} \enspace \text{and} \enspace C = \{s_{24}, s_{25},, s_{26}, ..., s_{64}.\}$$ Then compute the formulas that symbolically represent the sets $D = B \cap C$ and $E = B \cup C$.

8
symbolic_encoding/multiple_choice/2_1_symbrep_lect.tex

@ -0,0 +1,8 @@
\item \lect Given a state space of the size $|S| = 2^5 = 32$ and assuming $v_4$ is the most significant bit and $v_0$ is the least significant bit, which of the following symbolic representations or the given states is correct?
\begin{enumerate}
\item[$\square$] State $s_{15}$ is represented by: $\lnot v_4 \land v_3 \land v_3, \land v_1 \land \lnot v_0$
\item[$\square$] State $s_{31}$ is represented by: $v_4 \land v_3 \land v_3 \land v_1 \land v_0$
\item[$\square$] State $s_{4}$ is represented by: $\lnot v_4 \land \lnot v_3 \land \lnot v_2, \land v_1 \land \lnot v_0$
\item[$\square$] State $s_{10}$ is represented by: $v_4 \land v_3 \land \lnot v_3 \land \lnot v_1 \land v_0$
\end{enumerate}

8
symbolic_encoding/multiple_choice/2_1_symbrep_self.tex

@ -0,0 +1,8 @@
\item \self Given a state space of the size $|S| = 2^9 = 512$ and assuming $v_8$ is the most significant bit and $v_0$ is the least significant bit, which of the following symbolic representations or the given states is correct?
\begin{enumerate}
\item[$\square$] State $s_{214}$ is represented by: $\lnot v_8 \land v_7 \land v_6 \land \lnot v_5 \land v_4 \land \lnot v_3 \land v_2 \land v_1 \land \lnot v_0$
\item[$\square$] State $s_{501}$ is represented by: $v_8 \land v_7 \land v_6 \land v_5 \land v_4 \land \lnot v_3 \land v_2 \land \lnot v_1 \land v_0$
\item[$\square$] State $s_{0}$ is represented by: $\lnot v_8 \land \lnot v_7 \land \lnot v_6 \land \lnot v_5 \land \lnot v_4 \land \lnot v_3 \land \lnot v_2 \land \lnot v_1 \land \lnot v_0$
\item[$\square$] State $s_{448}$ is represented by: $v_8 \land v_7 \land v_6 \land \lnot v_5 \land \lnot v_4 \land \lnot v_3 \land \lnot v_2 \land v_1 \land \lnot v_0$
\end{enumerate}

8
symbolic_encoding/practical_questions/1_10_kripke_self.tex

@ -0,0 +1,8 @@
\item \self
Consider the example of a controller for a lamp.
Initially the light is off. Pressing the button once turns on the light and the light glows white. From this state, any short-lasting pressure of the button causes the light to switch its color randomly between white, red, green, blue, and yellow.
At any state, pressing the button for a longer time turns the light off.
Model the lamp controller as \emph{transition system}.

4
symbolic_encoding/practical_questions/1_1_kripke_lect.tex

@ -0,0 +1,4 @@
\item \lect Draw the graph for a \emph{transition system} $\mathcal{T}$ with:
$S = \{s_1, s_2, s_3, s_4\}, $\\
$S_0 = \{s_2\}, $\\
$R = \{\{s_1, s_2\}, \{s_1, s_1\}, \{s_2, s_4\}, \{s_2, s_3\}, \{s_3, s_1\}, \{s_4, s_2\}, \{s_4, s_3\}\}, $

29
symbolic_encoding/practical_questions/1_1_kripke_lect_sol.tex

@ -0,0 +1,29 @@
\begin{center}
\begin{tikzpicture}[scale=0.2]
\tikzstyle{every node}+=[inner sep=0pt]
\draw [black] (11,-26.9) circle (3);
\draw (11,-26.9) node {$s_2$};
\draw [black] (23.6,-15) circle (3);
\draw (23.6,-15) node {$s_1$};
\draw [black] (23.6,-38) circle (3);
\draw (23.6,-38) node {$s_4$};
\draw [black] (36.7,-26.9) circle (3);
\draw (36.7,-26.9) node {$s_3$};
\draw [black] (21.42,-17.06) -- (13.18,-24.84);
\fill [black] (13.18,-24.84) -- (14.11,-24.65) -- (13.42,-23.93);
\draw [black] (3.7,-26.9) -- (8,-26.9);
\fill [black] (8,-26.9) -- (7.2,-26.4) -- (7.2,-27.4);
\draw [black] (25.89,-36.06) -- (34.41,-28.84);
\fill [black] (34.41,-28.84) -- (33.48,-28.98) -- (34.12,-29.74);
\draw [black] (34.48,-24.88) -- (25.82,-17.02);
\fill [black] (25.82,-17.02) -- (26.08,-17.93) -- (26.75,-17.18);
\draw [black] (14,-26.9) -- (33.7,-26.9);
\fill [black] (33.7,-26.9) -- (32.9,-26.4) -- (32.9,-27.4);
\draw [black] (21.35,-36.02) -- (13.25,-28.88);
\fill [black] (13.25,-28.88) -- (13.52,-29.79) -- (14.18,-29.04);
\draw [black] (13.25,-28.88) -- (21.35,-36.02);
\fill [black] (21.35,-36.02) -- (21.08,-35.11) -- (20.42,-35.86);
\draw [black] (25.456,-12.658) arc (169.34618:-118.65382:2.25);
\fill [black] (26.59,-15.05) -- (27.28,-15.69) -- (27.47,-14.7);
\end{tikzpicture}
\end{center}

5
symbolic_encoding/practical_questions/1_1_kripke_self.tex

@ -0,0 +1,5 @@
\item \self Draw the graph for a \emph{transition system} $\mathcal{T}$ with:
$S = \{s_0, s_1, s_2\}, $\\
$S_0 = \{s_0, s_1\}, $\\
$R = \{\{s_0, s_0\}, \{s_0, s_1\}, \{s_0, s_2\}, \{s_1, s_0\}, \{s_1, s_1\}, \{s_1, s_2\}, \{s_2, s_0\}, \{s_2, s_1\}, \{s_2, s_2\}\}$.

1
symbolic_encoding/practical_questions/1_1_symbrep.tex

@ -0,0 +1 @@
\item \self Given a state space of size $|S| = 2^4 = 16$. Give the symbolic encoding for the following states: (a) $s_{4}$, (b) $s_{9}$, and (c) $s_{13}$.

1
symbolic_encoding/practical_questions/1_1_symbrep_self.tex

@ -0,0 +1 @@
\item \self Given a state space of size $|S| = 2^4 = 16$. Give the symbolic encoding for the following states: (a) $s_{4}$, (b) $s_{9}$, and (c) $s_{13}$.

38
symbolic_encoding/practical_questions/1_2_kripke_lect.tex

@ -0,0 +1,38 @@
\item \lect
Consider the example of an elevator.
Initially, the elevator is in the ground floor.
From the ground floor, it can either go basement, stay there for a while,
and then go back to the ground floor, or it can go from the ground floor
to the second floor, stay there for a while, and go back to the ground floor.
While traveling between ground floor to second floor, the elevator passes the first floor, but it cannot stop there.
Model this elevator as \emph{transition system}.
\iffalse
\item \lect
Given the following graph representation of a \textit{transition system}, state the contents of the sets $S, S_0 and R$
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=20pt}]
\node[node] (s0) {$s0$};
\node (s0s2) [below= 1cm of s0] {};
\node[node] (s1) [right of=s0s2] {$s1$};
\node[node] (s2) [below of=s0] {$s2$};
\node (start1) [left=1cm of s0] {};
\path[->] (start1) edge (s0);
\path[->] (s1) edge (s0);
\path[->] (s0) edge [bend left] (s2);
\path[->] (s2) edge (s1);
\path[->] (s2) edge [bend left] (s0);
\path[->] (s0.30) edge[bend right=90, looseness=15, out=240, in=300] (s0.60);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
\end{tikzpicture}
\end{center}
\fi

44
symbolic_encoding/practical_questions/1_2_kripke_lect_sol.tex

@ -0,0 +1,44 @@
We use the following states:
%ground floor, basement,second floor, passing ground floor
\begin{itemize}
\item $s_g$ indicates that the elevator is on the ground floor.
\item $s_b$ indicates that the elevator is in the basement.
\item $s_s$ indicates that the elevator is on the second floor.
\item $s_f$ indicates that the elevator is passing the first floor.
\end{itemize}
The transition system is then given by: $\mathcal{T}$ = ($S$, $S_0$, $R$) with $S$ = $\{s_g, s_b, s_s, s_f\}$, $S_0$ = $\{s_g\}$, $R$ = $\{(s_g, s_g), (s_g, s_b), (s_b, s_b), (s_b, s_g), (s_g, s_f), (s_f, s_s), (s_s, s_s), (s_s, s_f), (s_f, s_g)\}$\\
\begin{center}
\begin{tikzpicture}[scale=0.2]
\tikzstyle{every node}+=[inner sep=0pt]
\draw [black] (13.9,-26) circle (3);
\draw (13.9,-26) node {$s_g$};
\draw [black] (27.8,-35.6) circle (3);
\draw (27.8,-35.6) node {$s_b$};
\draw [black] (27.8,-26) circle (3);
\draw (27.8,-26) node {$s_f$};
\draw [black] (27.8,-15.8) circle (3);
\draw (27.8,-15.8) node {$s_s$};
\draw [black] (4.8,-26) -- (10.9,-26);
\fill [black] (10.9,-26) -- (10.1,-25.5) -- (10.1,-26.5);
\draw [black] (11.501,-24.218) arc (261.13116:-26.86884:2.25);
\fill [black] (13.85,-23.01) -- (14.47,-22.3) -- (13.48,-22.14);
\draw [black] (16.37,-27.7) -- (25.33,-33.9);
\fill [black] (25.33,-33.9) -- (24.96,-33.03) -- (24.39,-33.85);
\draw [black] (26.957,-38.467) arc (11.34364:-276.65636:2.25);
\fill [black] (25.01,-36.67) -- (24.13,-36.34) -- (24.33,-37.32);
\draw [black] (25.33,-33.9) -- (16.37,-27.7);
\fill [black] (16.37,-27.7) -- (16.74,-28.57) -- (17.31,-27.75);
\draw [black] (16.9,-26) -- (24.8,-26);
\fill [black] (24.8,-26) -- (24,-25.5) -- (24,-26.5);
\draw [black] (27.8,-23) -- (27.8,-18.8);
\fill [black] (27.8,-18.8) -- (27.3,-19.6) -- (28.3,-19.6);
\draw [black] (28.483,-12.891) arc (194.52895:-93.47105:2.25);
\fill [black] (30.52,-14.57) -- (31.42,-14.86) -- (31.17,-13.89);
\draw [black] (27.8,-18.8) -- (27.8,-23);
\fill [black] (27.8,-23) -- (28.3,-22.2) -- (27.3,-22.2);
\draw [black] (24.8,-26) -- (16.9,-26);
\fill [black] (16.9,-26) -- (17.7,-26.5) -- (17.7,-25.5);
\end{tikzpicture}
\end{center}

25
symbolic_encoding/practical_questions/1_2_kripke_self.tex

@ -0,0 +1,25 @@
\item \self
Find a \textit{symbolic encoding} for the set of initial states and the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
%\path[->] (s0) edge (s1);
\path[->] (s0) edge (s2);
\path[->] (s0) edge (s3);
\path[->] (s1) edge (s2);
\path[->] (s1) edge (s3);
%\path[->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
%\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
%\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
%\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

2
symbolic_encoding/practical_questions/1_2_symbrep_self.tex

@ -0,0 +1,2 @@
\item \self Given is the set of states $S=\{s_0,\dots,s_7\}$.
Find formulas in propositional logic that symbolically represent the sets $A = \{s_0, s_2,s_4, s_6 \}$, $B=\{s_0, s_1,s_2, s_3\}$, and $C=\{s_7, s_1\}$.

25
symbolic_encoding/practical_questions/1_3_kripke_self.tex

@ -0,0 +1,25 @@
\item \self
Find a \textit{symbolic encoding} for the set of initial states and the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
\path[<->] (s0) edge (s1);
\path[<->] (s0) edge (s2);
\path[<->] (s0) edge (s3);
\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
%\path[<->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

25
symbolic_encoding/practical_questions/1_4_kripke_self.tex

@ -0,0 +1,25 @@
\item \self
Find a \textit{symbolic encoding} for the set of initial states and the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
\path[<->] (s0) edge (s2);
%\path[<->] (s0) edge (s2);
%\path[<->] (s0) edge (s3);
%\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
%\path[<->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

32
symbolic_encoding/practical_questions/2_05_symbrep_self.tex

@ -0,0 +1,32 @@
\item \self Let $x$ and $y$ be the symbolic representations of the sets $X$ and
$Y$ respectively, and let $\alpha$ be the symbolic encoding of an
element $a$. Consider the following operations and relations
between $x$, $y$, and $\alpha$:
\begin{enumerate}[A.]
\item $x \rightarrow y$
\item $\alpha \models x$ ?
\item $x \wedge \neg y$
\item $\alpha \nvDash y$ ?
\item $x \equiv \bot$ ?
\item $x \vee y$
\end{enumerate}
For each of the following items, state which of the above operations
symbolically performs the respective set operation or answers the
respective set-specific question. Write the letters of the
corresponding operation/question into the boxes of the items below.
Note that some of the items below do not correspond to any of the
above operations or questions. Put a ``--'' in the box of these
items.
\begin{itemize}
\item[\Huge{$\square$}] Union: $X \cup Y$
\item[\Huge{$\square$}] Intersection: $X \cap Y$
\item[\Huge{$\square$}] Set Difference: $X \setminus Y$
\item[\Huge{$\square$}] Containment: $a \in X$?
\item[\Huge{$\square$}] Subset: $X \subseteq Y$?
\item[\Huge{$\square$}] Strict Subset: $X \subset Y$?
\item[\Huge{$\square$}] Emptiness: $X=\emptyset$?
\item[\Huge{$\square$}] Equality: $X=Y$?
\end{itemize}

39
symbolic_encoding/practical_questions/2_10_symbrep_lect.tex

@ -0,0 +1,39 @@
\item \lect
Consider the domain $A=\{Spain, France, Italy, Germany\}$ and
the two different symbolic encodings for $A$ given below.
Which one gives a shorter symbolic representation for the set
$B=\{France, Germany\}$? Illustrate your answer by giving the
representing formulas for $B$ in both encodings.
\vspace{.5cm}
% \begin{minipage}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 1}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $0$ & $1$ \\
Germany & $1$ & $1$
\end{tabular}
%\end{minipage}
%\begin{minipage}
\hspace{3cm}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 2}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $1$ & $1$ \\
Germany & $0$ & $1$
\end{tabular}
%\end{minipage}

7
symbolic_encoding/practical_questions/2_10_symbrep_lect_sol.tex

@ -0,0 +1,7 @@
Using encoding 1, we end up in the following formula:\\
$b = v_1$\\\\
Using encoding 2, we end up in the following formula:\\
$b = (v_1 \land \lnot v_0) \lor (\lnot v_1 \land v_0)$\\
Encoding 1 gives a shorter symbolic representation
for the set $B=\{France, Germany\}$.

1
symbolic_encoding/practical_questions/2_10_symbrep_self.tex

@ -0,0 +1 @@
\item \self Given a state space of size $|S| = 16$, find a symbolic binary encoding for this state space and compute the characteristic function for the sets of states $$C = \{s_{0}, s_{2}, s_{8}, s_{10}\} \enspace \text{and} \enspace C = \{s_{0}, s_{2}, s_{8}, s_{10}\}$$ Then compute the characteristic function for the sets $D = C \subseteq B$, $E = B \setminus C$ and $F = S \setminus E$. If possible, simplify the formulas.

9
symbolic_encoding/practical_questions/2_11_symbrep_lect.tex

@ -0,0 +1,9 @@
\item \lect
Find a symbolic binary encoding for $X = \{ 0,1, \ldots, 31 \}$.
Use it to find formulas that symbolically represent the sets $A$ and $B$ and simplify the formulas:
\begin{itemize}
\item $A =\{ 12, 13, 14, 15, 28, 29, 30, 31 \}$
\item $B =\{x \in X \mid 0 \leq x \leq 15\}$
\end{itemize}
Furthermore, give the formulas representing the sets
$C=A\cap B$ and $D = A \cup B$.

4
symbolic_encoding/practical_questions/2_11_symbrep_lect_sol.tex

@ -0,0 +1,4 @@
We use 5 Boolean variables, \{$v_4$, . . . , $v_0$\}, for the encoding.\\
$A = (v_2 \land v_3)$\\
$B = \lnot v_4$

21
symbolic_encoding/practical_questions/2_11_symbrep_self.tex

@ -0,0 +1,21 @@
\item \self Find a symbolic binary encoding for
$X = \{ 0,1, \ldots, 31 \}$.
Use it to find characteristic functions for the following sets. If possible, simplify the formulas.
\begin{enumerate}
\item $B =\{x \in X \mid 24 \leq x < 32\}$
\item
$C = \left\{ x \in X \middle| \enspace
\begin{array}{lll}
4 & \leq \enspace x & < 8 \\
12 & \leq \enspace x & < 16 \\
20 & \leq \enspace x & < 24
\end{array}
\right\}$
\end{enumerate}
Compute the characteristic functions of the following sets by symbolic operations, using your results from before and simplify your formulas.
\begin{enumerate}
\item $D = B \cup C$
\item $E = B \cap C$
\end{enumerate}

7
symbolic_encoding/practical_questions/2_12_symbrep_lect.tex

@ -0,0 +1,7 @@
\item \self Define the \textit{transition system} from the following symbolically encoded transition relations and draw the
corresponding graph:
\begin{align*}
(\lnot v_1 \land \lnot v_0 \land v'_1 \land v'_0) & \enspace \lor \\
(\neg v_1 \land v_0 \land \lnot v'_1 \land \lnot v'_0) & \enspace \lor \\
(\lnot v_1 \land \lnot v_0 \land \lnot v'_1 \land \lnot v'_0) &
\end{align*}

15
symbolic_encoding/practical_questions/2_12_symbrep_self.tex

@ -0,0 +1,15 @@
\item \self Find a symbolic binary encoding for
$X = \{ 0,1, \ldots, 31 \}$.
Use it to compute formulas in propositional logic that symbolically represent the following sets.
\begin{itemize}
\item $B =\{8, 9, 10, 11, 12, 13, 14, 15\}$
\item $C =\{x \in X \mid 0 \leq x \leq 15\}$
\end{itemize}
Compute the characteristic functions of the following sets by symbolic operations, using your results from before.
\begin{enumerate}
\item $D = B \cup C$
\item $E = B \cap C$
\item $F = C \setminus B$
\end{enumerate}

24
symbolic_encoding/practical_questions/2_13_symbrep_lect.tex

@ -0,0 +1,24 @@
\item \lect Find a \textit{symbolic encoding} for the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
\path[->] (s0) edge (s1);
\path[<->] (s0) edge (s2);
\path[<->] (s0) edge (s3);
\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
\path[<->] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
%\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
\path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

15
symbolic_encoding/practical_questions/2_13_symbrep_lect_sol.tex

@ -0,0 +1,15 @@
Using the variables $v_1$ and $v_0$, we can define the transition relation using the following formula:\\
\begin{center}
$\lnot v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$\lnot v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor \lnot v'_1 \land v'_0 \lor v'_1 \land \lnot v'_0 \lor v'_1 \land v'_0)$
\end{center}
We can further simplify the formula to:
\begin{center}
$\lnot v_1 \land \lnot v_0 \lor$\\
$\lnot v_1 \land v_0 \land (v'_0 \lor v'_1 \land \lnot v'_0) \ \lor$\\
$v_1 \land \lnot v_0 \land (\lnot v'_1 \lor v'_1 \land v'_0) \ \lor$\\
$v_1 \land v_0$
\end{center}

15
symbolic_encoding/practical_questions/2_13_symbrep_self.tex

@ -0,0 +1,15 @@
\item \self Find a symbolic binary encoding for
$X = \{ 0,1, \ldots, 31 \}$.
Use it to compute formulas in propositional logic that symbolically represent the following sets.
\begin{itemize}
\item $B =\{x \in X \mid \text{x is even}\}$
\item $C =\{x \in X \mid \text{x is odd}\}$
\item $D =\{0,1,2,3,4,5,6,7\}$
\end{itemize}
Compute the characteristic functions of the following sets by symbolic operations, using your results from before.
\begin{enumerate}
\item $E = B \cup D$
\item $F = C \cap E$
\item $G = E \setminus F$
\end{enumerate}

33
symbolic_encoding/practical_questions/2_17_symbrep_self.tex

@ -0,0 +1,33 @@
\item \self Find a \textit{symbolic encoding} for the \textit{transition relation} of the following \textit{Kripke structure} and
simplify your formulas. The labels of the states symbolize their symbolic encoding.
E.g. "110" = "$x_2 \land x_1 \land \lnot x_0$", i.e. the least significant bit corresponds to $x_0$,
the second-least significant bit to $x_1$, and so forth.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=2cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$000$};
\node[node] (s1) [above right of=s0] {$001$};
\node[node] (s2) [right of=s1] {$010$};
\node[node] (s3) [below right of=s2] {$011$};
\node[node] (s4) [below of=s3] {$100$};
\node[node] (s5) [below left of=s4] {$101$};
\node[node] (s6) [left of=s5] {$110$};
\node[node] (s7) [above left of=s6] {$111$};
\path[->] (s0) edge (s1);
\path[->] (s1) edge (s2);
\path[<->] (s2) edge (s3);
\path[->] (s3) edge (s4);
\path[->] (s4) edge (s7);
\path[->] (s7) edge (s6);
\path[<->] (s6) edge (s5);
\path[->] (s3) edge (s6);
\path[->] (s5) edge (s0);
\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
\path[->] (s4.30) edge[bend right=90, looseness=15, out=240, in=300] (s4.60);
\end{tikzpicture}
\end{center}

7
symbolic_encoding/practical_questions/2_18_symbrep_self.tex

@ -0,0 +1,7 @@
\item \self Define the \textit{transition system} from the following symbolically encoded transition relations and draw the
corresponding graph:
\begin{align*}
(v_1 \land v_0 \land \lnot v'_1 \land \neg v'_0) & \enspace \lor \\
(\neg v_1 \land v_0 \land \lnot v'_1 \land v'_0) & \enspace \lor \\
(v_1 \land v_0 \land v'_1 \land v'_0) &
\end{align*}

1
symbolic_encoding/practical_questions/2_1_symbrep_lect.tex

@ -0,0 +1 @@
\item \lect Given a state space of size $|S| = 2^4 = 16$, give the symbolic encoding for the following states: (a) $s_{7}$, (b) $s_{15}$, and (c) $s_{10}$.

6
symbolic_encoding/practical_questions/2_1_symbrep_lect_sol.tex

@ -0,0 +1,6 @@
For the symbolic encoding we need 4 Boolean variables, \{$v_3$, . . . , $v_0$\}.
Let $v_3$ be the most significant bit, and $v_0$ the least significant bit.\\
(a) $s_{7}$ = $\lnot v_3 \land v_2 \land v_1 \land v_0$\\
(b) $s_{15}$ = $v_3 \land v_2 \land v_1 \land v_0$\\
(c) $s_{10}$ = $v_3 \land \lnot v_2 \land v_1 \land \lnot v_0$

7
symbolic_encoding/practical_questions/2_1_symbrep_self.tex

@ -0,0 +1,7 @@
\item \self Given a state space of the size $|S| = 2^{11} = 2048$, give the symbolic encoding for the following states:
\begin{enumerate}
\item $s_{435}$
\item $s_{1467}$
\item $s_{2022}$
\end{enumerate}

9
symbolic_encoding/practical_questions/2_20_symbrep_self.tex

@ -0,0 +1,9 @@
\item \self Build a \textit{Kripke structure} from the following symbolically encoded transition relations and draw the
corresponding graph:
\begin{align*}
(\lnot x_2 \land \lnot x_1 \land \lnot x_0) \land (\lnot x_2' \land x_0') & \enspace \lor \\
(\lnot x_2 \land x_1) \land ((x_2' \oplus x_1') \land x_0') & \enspace \lor \\
(x_2 \land (x_1 \leftrightarrow x_0)) \land (x_2' \land (x_1' \oplus x_0')) & \enspace \lor \\
(x_2 \land x_1 \land \lnot x_0) \land (x_2' \land (x_1' \lor x_0')) &
\end{align*}

2
symbolic_encoding/practical_questions/2_2_symbrep_lect.tex

@ -0,0 +1,2 @@
\item \lect Given is the set of states $S=\{s_0,\dots,s_7\}$.
Find formulas in propositional logic that symbolically represent the sets $A = \{s_7, s_6,s_3, s_2 \}$, $B=\{s_1, s_3,s_5, s_7\}$, and $C=\{s_7, s_6,s_0, s_1\}$.

6
symbolic_encoding/practical_questions/2_2_symbrep_lect_sol.tex

@ -0,0 +1,6 @@
$A = \{s_7, s_6,s_3, s_2 \}$ = $(v_2 \land v_1 \land v_0) \lor (v_2 \land v_1 \land \lnot v_0) \lor (\lnot v_2 \land v_1 \land v_0) \lor (\lnot v_2 \land v_1 \land \lnot v_0)$\\
\hspace*{0,34cm} = $v_1$\\\\
$B=\{s_1, s_3,s_5, s_7\}$ = $(\lnot v_2 \land \lnot v_1 \land v_0) \lor (\lnot v_2 \land v_1 \land v_0) \lor (v_2 \land \lnot v_1 \land v_0) \lor (v_2 \land v_1 \land v_0)$\\
\hspace*{0,34cm} = $v_0$\\\\
$C=\{s_7, s_6,s_0, s_1\}$ = $(v_2 \land v_1 \land v_0) \lor (v_2 \land v_1 \land \lnot v_0) \lor (\lnot v_2 \land \lnot v_1 \land \lnot v_0) \lor (\lnot v_2 \land \lnot v_1 \land v_0)$ \\
\hspace*{0,34cm} = $(v_2 \land v_1) \lor (\lnot v_2 \land \lnot v_1)$

8
symbolic_encoding/practical_questions/2_2_symbrep_self.tex

@ -0,0 +1,8 @@
\item \self Consider the following set of states defined by the valuations:
\begin{align*}
(v_0 \imp \top, v_1 \imp \top, v_2 \imp \top, v_3 \imp \bot),
(v_0 \imp \top, v_1 \imp \bot, v_2 \imp \top, v_3 \imp \bot),\\
(v_0 \imp \top, v_1 \imp \bot, v_2 \imp \bot, v_3 \imp \bot),
(v_0 \imp \top, v_1 \imp \top, v_2 \imp \bot, v_3 \imp \bot),
\end{align*}
Represent this set of states symbolically using a propositional formula and simplify this formula as best as possible.

40
symbolic_encoding/practical_questions/2_3_symbrep_lect.tex

@ -0,0 +1,40 @@
\item \lect Consider the domain $A=\{Maths, \;English, \;Biology, \;Physical \; Education\}$ and
the two different symbolic encodings for $A$ given below.
Which one gives a shorter characteristic function for the following sets?
\begin{enumerate}
\item $B = \{Maths, \; Biology\}$
\item $C = \{English, \; Biology\}$
\item $D = \{Maths, \;Physical \; Education\}$
\end{enumerate}
Illustrate your answer by giving the
characteristic function for $B$, $C$ and $D$ in both encodings.
\vspace{.5cm}
%\begin{minipage}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 1}} \\
\hline
Element & x & y \\
\hline
Maths & $0$ & $0$ \\
English & $1$ & $0$ \\
Biology & $0$ & $1$ \\
Physical Education & $1$ & $1$
\end{tabular}
%\end{minipage}
%\begin{minipage}
\hspace{3cm}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 2}} \\
\hline
Element & x & y \\
\hline
Maths & $0$ & $0$ \\
English & $1$ & $0$ \\
Biology & $1$ & $1$ \\
Physical Education & $0$ & $1$
\end{tabular}
%\end{minipage}

48
symbolic_encoding/practical_questions/2_3_symbrep_self.tex

@ -0,0 +1,48 @@
\item \self Consider the domain $A=\{Asparagus, \;Bell \; Pepper, \;Cabbage, \;Tomato, \\ \; Onion, \;Zucchini, \;Eggplant, \; Mushroom\}$ and
the two different symbolic encodings for $A$ given below.
Which one gives a shorter characteristic function for the following sets?
\begin{enumerate}
\item $B = \{Asparagus, \; Mushroom\}$
\item $C = \{Bell \; Pepper, \; Onion, \; Zucchini, \; Eggplant\}$
\item $D = \{Cabbage, \; Tomato\}$
\end{enumerate}
Illustrate your answer by giving the
characteristic function for $B$, $C$ and $D$ in both encodings.
\vspace{.5cm}
%\begin{minipage}
\begin{tabular}{l|l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 1}} \\
\hline
Element & x & y & z\\
\hline
Asparagus & $0$ & $0$ & $0$ \\
Bell Pepper & $0$ & $0$ & $1$ \\
Cabbage & $0$ & $1$ & $0$ \\
Tomato & $0$ & $1$ & $1$ \\
Onion & $1$ & $0$ & $0$ \\
Zucchini & $1$ & $0$ & $1$ \\
Eggplant & $1$ & $1$ & $0$ \\
Mushroom & $1$ & $1$ & $1$
\end{tabular}
%\end{minipage}
%\begin{minipage}
\hspace{3cm}
\begin{tabular}{l|l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 2}} \\
\hline
Element & x & y & z \\
\hline
Asparagus & $1$ & $1$ & $0$ \\
Bell Pepper & $1$ & $0$ & $1$ \\
Cabbage & $0$ & $1$ & $0$ \\
Tomato & $1$ & $1$ & $1$ \\
Onion & $0$ & $0$ & $0$ \\
Zucchini & $0$ & $0$ & $1$ \\
Eggplant & $1$ & $0$ & $0$ \\
Mushroom & $0$ & $1$ & $1$
\end{tabular}
%\end{minipage}

15
symbolic_encoding/practical_questions/2_4_symbrep_lect.tex

@ -0,0 +1,15 @@
\item \self The following table shows eight students and their means of transportation. Find a symbolic encodings representing the list of students.
For this encoding, give the symbolic representation of the set $B$ of all students that go by \emph{bike}, and the set $C$ of all students that go by \emph{car}.
\begin{tabular}{l|l}
Name & Transportation \\
\hline
Alice & Car \\
Bob & Bike \\
Carl & Tram \\
David & Bike \\
Eve & Tram \\
Frank & Bike \\
Greg & Tram \\
Hank & Bike \\
\end{tabular}

17
symbolic_encoding/practical_questions/2_4_symbrep_self.tex

@ -0,0 +1,17 @@
\item \self
Listed are the participants of a seminar as well as their choice of snacks. Find a symbolic encodings for the participants.
For for this encoding, give the symbolic representation of the set $B$ of all participants that ordered \emph{bananas}, and the set $C$ of all participants that ordered cake.
\begin{tabular}{l|l}
Name & Snack \\
\hline
Alice & banana \\
Bob & cake \\
Carl & banana \\
David & banana \\
Eve & cake \\
Frank & cake \\
Greg & orange \\
Hank & cake \\
\end{tabular}

36
symbolic_encoding/practical_questions/2_5_symbrep_self.tex

@ -0,0 +1,36 @@
\item \self
Consider the domain $A=\{Spain, France, Italy, Germany\}$ and
the two different symbolic encodings for $A$ given below.
Which one gives a shorter symbolic representation for the set
$B=\{France, Italy\}$? Illustrate your answer by giving the
representing formulas for $B$ in both encodings.
\vspace{.5cm}
% \begin{minipage}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 1}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $0$ & $1$ \\
Germany & $1$ & $1$
\end{tabular}
%\end{minipage}
%\begin{minipage}
\hspace{3cm}
\begin{tabular}{l|l|l}
\hline
\multicolumn{3}{c}{\textbf{Encoding 2}} \\
\hline
Element & $v_1$ & $v_0$ \\
\hline
Spain & $0$ & $0$ \\
France & $1$ & $0$ \\
Italy & $1$ & $1$ \\
Germany & $0$ & $1$
\end{tabular}
%\end{minipage}

2
symbolic_encoding/practical_questions/2_6_symbrep_lect.tex

@ -0,0 +1,2 @@
\item \self
Given a state space of size $|S| = 64$, find a symbolic binary encoding for this state space and compute the formulas that symbolically represent the sets of states $$B = \{s_{16}, s_{17}, s_{18}, ..., s_{32}\} \enspace \text{and} \enspace C = \{s_{24}, s_{25},, s_{26}, ..., s_{64}.\}$$ Then compute the formulas that symbolically represent the sets $D = B \cap C$ and $E = B \cup C$.

41
symbolic_encoding/practical_questions/2_6_symbrep_self.tex

@ -0,0 +1,41 @@
\item \self Consider the following set operations and relations between
two sets $X$ and $Y$, and an element $a$:
\begin{enumerate}
\item Union: $X \cup Y$
\item Intersection: $X \cap Y$
\item Set Difference: $X \setminus Y$
\item Containment: $a \in X$?
\item Subset: $X \subseteq Y$?
\item Strict Subset: $X \subset Y$?
\item Emptiness: $X=\emptyset$?
\item Equality: $X=Y$?
\end{enumerate}
Let $x$ and $y$ be the symbolic representations of $X$ and $Y$
respectively, and let $\alpha$ be the symbolic encoding of element
$a$. For each of the following items, state which of the above
operations is performed, or which of the above questions is answered.
Write the letters of the corresponding operation/question into the
boxes of the items below. Note that some of the items below do not
perform any of the above operations or answer any of the above
questions. Put a ``--'' in the box of these items. Also note that
some of the items below might do the same computation or answer the
same question.
\begin{itemize}
\item[\Huge{$\square$}] $\neg x \vee y$
\item[\Huge{$\square$}] $x \wedge y$
\item[\Huge{$\square$}] $x\equiv \top$?
\item[\Huge{$\square$}] $x\equiv y$?
\item[\Huge{$\square$}] $(x \rightarrow y) \wedge (y \rightarrow
x)$?
\item[\Huge{$\square$}] $x\equiv \bot$?
\item[\Huge{$\square$}] $y \wedge \neg x$
\item[\Huge{$\square$}] $x \rightarrow \bot$?
\item[\Huge{$\square$}] $\alpha \models x$?
\item[\Huge{$\square$}] $\alpha \models \neg x$?
\item[\Huge{$\square$}] $\neg \alpha \models x$?
\item[\Huge{$\square$}] $x \rightarrow \alpha$?
\item[\Huge{$\square$}] $y \rightarrow x$?
\item[\Huge{$\square$}] $x \rightarrow y$?
\item[\Huge{$\square$}] $(x \rightarrow y) \wedge (x\not \equiv
y)$?
\end{itemize}

14
symbolic_encoding/practical_questions/2_7_symbrep_lect.tex

@ -0,0 +1,14 @@
\item \self Find a symbolic binary encoding for
$X = \{ 0,1, \ldots, 31 \}$.
Use it to compute formulas in propositional logic that symbolically represent the following sets.
\begin{itemize}
\item $B =\{4, 5, 12, 13, 20, 21, 28, 29 \}$
\item $C =\{1, 2, 13, 14 \}$
\end{itemize}
Compute the characteristic functions of the following sets by symbolic operations, using your results from before.
\begin{enumerate}
\item $D = B \cup C$
\item $E = X \setminus D$
\end{enumerate}

37
symbolic_encoding/practical_questions/2_7_symbrep_self.tex

@ -0,0 +1,37 @@
\item \self Consider the set $\mathbb{N}_{16} = \{0,1,2,3,\dots,14,15\}$.
Let $x_0$, $x_1$, $x_2$, and $x_3$ be propositional variables,
used for symbolic encoding of the elements of $\mathbb{N}_{16}$,
using standard binary encoding, with $x_0$ being the least
significant ($2^0$) bit, and $x_3$ being the most significant
($2^3$) bit.
Now, consider the following subsets of $\mathbb{N}_{16}$.
\begin{itemize}
\item $A = \{0, 1, 2, 3\}$
\item $B = \{0, 1, 2, 3, 4, 5, 6, 7\}$
\item $C = \{0, 2, 4, 6, 8, 10, 12, 14\}$
\item $D = \{8, 10, 12, 14\}$
\item $E = \{3, 10\}$
\item $F = \{ \}$
\end{itemize}
In the following list of formulas, write the letter of the set that
the formula encodes into the adjacent box. Note that some sets might
be encoded by more than one formula. Also note that some formulas
might not encode any of the above sets; write a ``--'' in the box of
such formulas.
\begin{itemize}
\item[\Huge{$\square$}] $\bot$
\item[\Huge{$\square$}] $\top$
\item[\Huge{$\square$}] $(\neg x_3 \wedge \neg x_2 \wedge x_1
\wedge x_0) \vee (x_3 \wedge \neg x_2 \wedge x_1 \wedge \neg
x_0)$
\item[\Huge{$\square$}] $x_0$
\item[\Huge{$\square$}] $\neg x_0$
\item[\Huge{$\square$}] $x_3$
\item[\Huge{$\square$}] $\neg x_3$
\item[\Huge{$\square$}] $\neg x_3 \vee \neg x_2$
\item[\Huge{$\square$}] $\neg x_3 \wedge \neg x_2$
\end{itemize}

1
symbolic_encoding/practical_questions/2_8_symbrep_self.tex

@ -0,0 +1 @@
\item \self Given a state space of size $|S| = 2048$, find a symbolic binary encoding for this state space and compute the characteristic function for the sets of states $$B = \{s_0, s_1, s_2, ..., s_{1023}\} \enspace \text{and} \enspace C = \{s_{512}, s_{513},, s_{514}, ..., s_{1535}.\}$$ Then compute the characteristic function for the sets $D = B \cup C$ and $E = B \setminus C$. If possible, simplify the formulas.

24
symbolic_encoding/practical_questions/2_9_symbrep_lect.tex

@ -0,0 +1,24 @@
\item \lect Find a \textit{symbolic encoding} for the \textit{transition relation} of the following \emph{transition system} and
simplify your formulas. Use a binary encoding to encode the states, e.g.,
encode the state $s_2$ with the formula $v1 \wedge \neg v_0$.
\begin{center}
\vspace{-2em}
\begin{tikzpicture}[auto, node distance=3cm,shorten >=1pt,
thick,node/.style={circle,draw,minimum size=25pt}]
\node[node] (s0) {$s_0$};
\node[node] (s1) [right of=s0] {$s_1$};
\node[node] (s2) [below of=s1] {$s_2$};
\node[node] (s3) [below of=s0] {$s_3$};
%\path[<->] (s0) edge (s1);
\path[->] (s0) edge (s2);
\path[<-] (s0) edge (s3);
%\path[<->] (s1) edge (s2);
\path[<->] (s1) edge (s3);
\path[<-] (s2) edge (s3);
\path[->] (s0.120) edge[bend right=90, looseness=15, out=240, in=300] (s0.150);
%\path[->] (s1.30) edge[bend right=90, looseness=15, out=240, in=300] (s1.60);
%\path[->] (s2.30) edge[bend right=90, looseness=15, out=240, in=300] (s2.60);
% \path[->] (s3.120) edge[bend right=90, looseness=15, out=240, in=300] (s3.150);
\end{tikzpicture}
\end{center}

13
symbolic_encoding/practical_questions/2_9_symbrep_lect_sol.tex

@ -0,0 +1,13 @@
Using the variables $v_1$ and $v_0$, we can define the transition relation using the following formula:\\
\begin{center}
$\lnot v_1 \land \lnot v_0 \land (\lnot v'_1 \land \lnot v'_0 \lor v'_1 \land \lnot v'_0) \ \lor$\\
$\lnot v_1 \land v_0 \land v'_1 \land v'_0 \ \lor$\\
$v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor \lnot v'_1 \land \lnot v'_0 \lor v'_1 \land \lnot v'_0)$\\
\end{center}
We can further simplify the formula to:
\begin{center}
$\lnot v_1 \land \lnot v_0 \land \lnot v'_0 \ \lor$\\
$\lnot v_1 \land v_0 \land v'_1 \land v'_0 \ \lor$\\
$v_1 \land v_0 \land (\lnot v'_1 \land v'_0 \lor \lnot v'_0)$\\
\end{center}

3
symbolic_encoding/practical_questions/2_9_symbrep_self.tex

@ -0,0 +1,3 @@
\item \self Given a state space of size $|S| = 64$. Find a symbolic binary encoding for this state space and compute the formulas that symbolically represent the sets $$B = \{s_{32}, s_{33}, s_{34}, ..., s_{63}\} \enspace \text{and} \enspace C = \{s_{16}, s_{17},, s_{18}, ..., s_{40}\}.$$
Following, compute the formulas that represent the sets $D = B \cap C$, $E = B \cup C$, $F = B \setminus C$ and $G = C \setminus B$.

128
symbolic_encoding/symbolic_encoding.tex

@ -0,0 +1,128 @@
\begin{questionSection}{Transition Systems}
\question{symbolic_encoding/0001.tex}
{symbolic_encoding/0001_sol.tex}
{3cm}
\question{symbolic_encoding/0002.tex}
{symbolic_encoding/0002_sol.tex}
{3cm}
\question{symbolic_encoding/1001.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1007.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1008.tex}
{no_solution}
{3cm}
\end{questionSection}
\begin{questionSection}{Symbolic Encoding}
\question{symbolic_encoding/0003.tex}
{symbolic_encoding/0003_sol.tex}
{3cm}
\question{symbolic_encoding/0004.tex}
{symbolic_encoding/0004_sol.tex}
{3cm}
\question{symbolic_encoding/0008.tex}
{symbolic_encoding/0008_sol.tex}
{3cm}
\question{symbolic_encoding/1002.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1003.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/0005.tex}
{symbolic_encoding/0005_sol.tex}
{3cm}
\question{symbolic_encoding/0006.tex}
{symbolic_encoding/0006_sol.tex}
{3cm}
\question{symbolic_encoding/1004.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1005.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1006.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1009.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1011.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1015.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1016.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1017.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1018.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1019.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1020.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1021.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1000.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1010.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1012.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/1013.tex}
{no_solution}
{3cm}
\question{symbolic_encoding/0007.tex}
{symbolic_encoding/0007_sol.tex}
{3cm}
\end{questionSection}
%\question{symbolic_encoding/1014.tex}
% {no_solution}
% {3cm}

1
symbolic_encoding/theory_questions/0_1_symb_lect.tex

@ -0,0 +1 @@
\item \lect Given the term \textit{state} within a reactive system, what does a \textit{state} do? \underline{rausnehmen?}

1
symbolic_encoding/theory_questions/0_1_symb_self.tex

@ -0,0 +1 @@
\item \self Given the term \textit{transition} within a reactive system, what does the term \textit{transition} mean? How can a \textit{transition} be determined?

2
symbolic_encoding/theory_questions/1_0_kripke_self.tex

@ -0,0 +1,2 @@
\item \self
Give the definition of a \emph{transition system} $\mathcal{T}$ and an example.

3
symbolic_encoding/theory_questions/2_01_symbrep_self.tex

@ -0,0 +1,3 @@
\item \self What is the main advantage of symbolic set operations over
non-symbolic operations that enumerate all set elements
explicitly?

1
symbolic_encoding/theory_questions/2_1_symbrep_self.tex

@ -0,0 +1 @@
\item \self Considering the \textit{representation of a single state}, for a given valuation, we can write a formula that is true for exactly that evaluation. How can in contrast the \textit{representation of sets of states} be defined? Give a small example of such a representation.

4
symbolic_encoding/theory_questions/2_2_symbrep_self.tex

@ -0,0 +1,4 @@
\item \self Assume you are given the formulas $a$ and
$b$, which symbolically represent the sets $A$ and $B$,
respectively. Give the formula
$c$, which symbolically represents the set $C= A \setminus B$.

1
symbolic_encoding/theory_questions/2_3_symbrep_lect.tex

@ -0,0 +1 @@
\item \lect Given a \textit{set of ordered pairs of states}, how can a transition relation of a \textit{transition system} be symbolically represented? Explain which sets of variables you need and give an example of such a representation.

5
symbolic_encoding/theory_questions/2_3_symbrep_self.tex

@ -0,0 +1,5 @@
\item \self Assume you are given the formulas $a$ and
$b$, which symbolically represent the sets $A$ and $B$,
respectively. What would you have to check on $a, b$ to test
whether or not $A$ is a strict subset of $B$, i.e., $A \subset
B$?
Loading…
Cancel
Save