|
|
\begin{minipage}{0.5\textwidth} \begin{tabbing} $f$ \= $= (p \leftrightarrow q) \land (r \leftrightarrow s)$\\ \>$ f_r $ \= $= (p \leftrightarrow q) \land s$ \\ \>\>$ f_{rs} $ \= $= (p \leftrightarrow q)$ \\ \>\>\>$ f_{rsp} $ \= $= q$ \\ \>\>\>\>$ f_{rspq} $ \= $= \top$ \\ \>\>\>\>$ f_{rsp \lnot q} $ \= $= \bot$ \\ \>\>\>$ f_{rs \lnot p} $ \= $= \lnot q = \lnot f_{rsp}$ \\ \>\>$ f_{r \lnot s} $ \= $= \bot$ \\ \>$ f_{\lnot r} = (p \leftrightarrow q) \land \lnot s$ \\ \>\>$ f_{\lnot rs} $ \= $= \bot$ \\ \>\>$ f_{\lnot r \lnot s} $ \= $= (p \leftrightarrow q) = f_{rs}$ \\ \end{tabbing} \end{minipage} \begin{minipage}{0.5\textwidth} The final ROBDD: \begin{center} \begin{forest} for tree={circle, draw, no edge, minimum size=2em, inner sep=0pt, s sep=6mm, l sep=6mm} [$f$, rectangle, draw, tikz={\draw [line] () to (r.north);} [$f_r$, rectangle, draw, tikz={\draw [line] () to (s1.north west);}] [$r$, name=r, tikz={\draw [line] () to (s1.north); \draw [fulldot=.5] () to (s2.north);} [$f_{\lnot r \lnot s}$, rectangle, draw, tikz={\draw [line] () to (p.north west);}] [$f_{rs}$ , rectangle, draw, tikz={\draw [line] () to (p.north west);}] [$s$, name=s1, tikz={\draw [line] () to (p.north); \draw [fulldot=.5] () to (-0.2, -3.5);} [$f_{\lnot rsp}$, rectangle, draw, tikz={\draw [line] () to (q.north west);}] [$p$, name=p, tikz={\draw [line, bend right=14] () to (q.north); \draw [fulldot=.5, bend left=14] () to (q.north east);} [$q$, name=q, tikz={\draw [line] () to (-2.3, -6.2); \draw [fulldot=.5] () to (-1.5, -6.2);} ] [,phantom] ] [,phantom] [,phantom] ] [$s$, name=s2, tikz={\draw [line] () to (0.2,-3.5); \draw [fulldot=.5, bend left=70] () to (p.east);}] [,phantom] [,phantom] ] [$f_{\lnot r}$, rectangle, draw, tikz={\draw [fulldot=.5] () to (s2.north east);}] ] \end{forest} \end{center}
\end{minipage}
|