|
|
\begin{minipage}{0.5\textwidth} \begin{tabbing} $f$ \= $= (p \oplus q) \land \lnot r$\\ \>$ f_p $ \= $= \lnot q \land \lnot r$ \\ \>\>$ f_{pq} $ \= $= \bot$ \\ \>\>$ f_{p \lnot q} $ \= $= \lnot r$ \\ \>\>\>$ f_{p \lnot q r} $ \= $= \bot$ \\ \>\>\>$ f_{p \lnot q \lnot r} $ \= $= \top$ \\ \>$ f_{\lnot p} = q \land \lnot r$ \\ \>\>$ f_{\lnot pq} $ \= $= \lnot r = f_{p \lnot q}$ \\ \>\>$ f_{\lnot p \lnot q} $ \= $= \bot$ \\ \end{tabbing} \end{minipage} \begin{minipage}{0.5\textwidth} The final ROBDD: \begin{center} \begin{forest} for tree={circle, draw, no edge, minimum size=2em, inner sep=0pt, s sep=6mm, l sep=6mm} [$f$, rectangle, draw, tikz={\draw [fulldot=.3] () to (p.north);} [$f_q$, rectangle, draw, tikz={\draw [fulldot=.3] () to (q1.north);}] [$p$, name=p, tikz={\draw [line] () to (q1.north east); \draw [dot=.3] () to (q2.north west);} [$q$, name=q1, tikz={\draw [line] () to (-2,-3.5); \draw [dot=.3] () to (r.north west);} [$f_{p \lnot q}$, rectangle, draw, tikz={\draw [fulldot=.3] () to (r.west);}] ] [$q$, name=q2, tikz={\draw [line] () to (r.north east); \draw [dot=.3] () to (2,-3.5);} [$r$, name=r, tikz={\draw [line] () to (-0.5,-4.8); \draw [fulldot=.3] () to (0.5, -4.8);}] [$f_{\lnot pq}$, rectangle, draw, tikz={\draw [fulldot=.3] () to (r.east);}] [,phantom] ] ] [$f_{\lnot q}$, rectangle, draw, tikz={\draw [fulldot=.3] () to (q2.north);}] ] \end{forest} \end{center}
\end{minipage}
|