|
|
\hspace{-0.09cm}\scalebox{0.85}{ \begin{dplltabular}{5} \dpllStep{9|10|11|12|13} \dpllDecL{0|1|1|1|1} \dpllAssi{ - |$\lnot e_{0}$|$\lnot e_{0}, e_{1}$|$\lnot e_{0}, e_{1}, e_{2}$|\makecell{$\lnot e_{0}, e_{1}, e_{2}, $ \\ $\lnot e_{3}$}} \dpllClause{1}{$e_{0}, e_{1}, e_{2}$}{$e_{0}, e_{1}, e_{2}$|$e_{1}, e_{2}$|\done|\done|\done} \dpllClause{2}{$\lnot e_{0}, e_{1}$}{$\lnot e_{0}, e_{1}$|\done|\done|\done|\done} \dpllClause{3}{$\lnot e_{1}, e_{2}$}{$\lnot e_{1}, e_{2}$|$\lnot e_{1}, e_{2}$|$e_{2}$|\done|\done} \dpllClause{4}{$e_{2}, e_{3}$}{$e_{2}, e_{3}$|$e_{2}, e_{3}$|$e_{2}, e_{3}$|\done|\done} \dpllClause{5}{$\lnot e_{2}, e_{1}$}{$\lnot e_{2}, e_{1}$|$\lnot e_{2}, e_{1}$|\done|\done|\done} \dpllClause{6}{$\lnot e_{3}, \lnot e_{1}$}{$\lnot e_{3}, \lnot e_{1}$|$\lnot e_{3}, \lnot e_{1}$|$\lnot e_{3}$|$\lnot e_{3}$|\done} \dpllClause{7}{$e_{0}, e_{1}$}{$e_{0}, e_{1}$|$e_{1}$|\done|\done|\done} \dpllClause{8}{$e_{0}, \lnot e_{1}, \lnot e_{2}, e_{3}$}{\makecell{$e_{0}, \lnot e_{1}, \lnot e_{2}, $ \\ $e_{3}$}|$\lnot e_{1}, \lnot e_{2}, e_{3}$|$\lnot e_{2}, e_{3}$|$e_{3}$|\conflict} \dpllBCP{ - |$e_{1}$|$e_{2}$|$\lnot e_{3}$| - } \dpllPL{ - | - | - | - | - } \dpllDeci{$\lnot e_{0}$| - | - | - | - } \end{dplltabular} }
Conflict in step 13\\ \scalebox{0.75}{
\begin{tikzpicture}[>=latex,line join=bevel,] \pgfsetlinewidth{1bp} %%
\pgfsetcolor{black} % Edge: 1 -> 5
\draw [->] (22.3bp,50.0bp) .. controls (35.47bp,50.0bp) and (58.583bp,50.0bp) .. (85.878bp,50.0bp); \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (54.0bp,57.5bp) node {$$7$$}; % Edge: 3 -> 6
\draw [->] (197.32bp,50.0bp) .. controls (211.2bp,50.0bp) and (236.16bp,50.0bp) .. (263.96bp,50.0bp); \draw (232.0bp,57.5bp) node {$$8$$}; % Edge: 4 -> 2
\draw [->] (242.95bp,12.194bp) .. controls (259.12bp,14.134bp) and (291.4bp,18.008bp) .. (322.79bp,21.775bp); % Edge: 5 -> 3
\draw [->] (108.32bp,50.0bp) .. controls (122.2bp,50.0bp) and (147.16bp,50.0bp) .. (174.96bp,50.0bp); \draw (140.0bp,57.5bp) node {$$3$$}; % Edge: 5 -> 4
\draw [->] (105.82bp,43.402bp) .. controls (111.18bp,39.225bp) and (118.62bp,34.054bp) .. (126.0bp,31.0bp) .. controls (154.04bp,19.403bp) and (189.09bp,14.461bp) .. (220.77bp,11.572bp); \draw (140.0bp,38.5bp) node {$$6$$}; % Edge: 5 -> 6
\draw [->] (105.67bp,57.009bp) .. controls (110.96bp,61.36bp) and (118.39bp,66.571bp) .. (126.0bp,69.0bp) .. controls (176.81bp,85.217bp) and (195.19bp,85.217bp) .. (246.0bp,69.0bp) .. controls (250.16bp,67.671bp) and (254.27bp,65.511bp) .. (266.33bp,57.009bp); \draw (186.0bp,89.5bp) node {$$8$$}; % Edge: 6 -> 2
\draw [->] (285.16bp,45.662bp) .. controls (293.01bp,41.945bp) and (304.56bp,36.472bp) .. (323.68bp,27.417bp); % Node: 1
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (11.0bp,50.0bp) ellipse (11.0bp and 11.0bp); \draw (11.0bp,50.0bp) node {$\lnot e_{0}$}; \end{scope} % Node: 5
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (97.0bp,50.0bp) ellipse (11.0bp and 11.0bp); \draw (97.0bp,50.0bp) node {$e_{1}$}; \end{scope} % Node: 2
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (334.0bp,23.0bp) ellipse (11.0bp and 11.0bp); \draw (334.0bp,23.0bp) node {$\bot$}; \end{scope} % Node: 3
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (186.0bp,50.0bp) ellipse (11.0bp and 11.0bp); \draw (186.0bp,50.0bp) node {$e_{2}$}; \end{scope} % Node: 6
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (275.0bp,50.0bp) ellipse (11.0bp and 11.0bp); \draw (275.0bp,50.0bp) node {$e_{3}$}; \end{scope} % Node: 4
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (232.0bp,11.0bp) ellipse (11.0bp and 11.0bp); \draw (232.0bp,11.0bp) node {$\lnot e_{3}$}; \end{scope} %
\end{tikzpicture}
} \begin{prooftree} \AxiomC{$8. \; e_{0} \lor \lnot e_{1} \lor \lnot e_{2} \lor e_{3}$} \AxiomC{$3. \; \lnot e_{1} \lor e_{2}$} \BinaryInfC{$e_{0} \lor \lnot e_{1} \lor e_{3}$} \AxiomC{$6. \; \lnot e_{3} \lor \lnot e_{1}$} \BinaryInfC{$e_{0} \lor \lnot e_{1}$} \AxiomC{$7. \; e_{0} \lor e_{1}$} \BinaryInfC{$e_{0}$} \end{prooftree}
\hspace{-0.09cm}\scalebox{0.85}{ \begin{dplltabular}{5} \dpllStep{14|15|16|17|18} \dpllDecL{0|0|0|0|0} \dpllAssi{ - |$e_{0}$|$e_{0}, e_{1}$|$e_{0}, e_{1}, e_{2}$|\makecell{$e_{0}, e_{1}, e_{2}, $ \\ $\lnot e_{3}$}} \dpllClause{1}{$e_{0}, e_{1}, e_{2}$}{$e_{0}, e_{1}, e_{2}$|\done|\done|\done|\done} \dpllClause{2}{$\lnot e_{0}, e_{1}$}{$\lnot e_{0}, e_{1}$|$e_{1}$|\done|\done|\done} \dpllClause{3}{$\lnot e_{1}, e_{2}$}{$\lnot e_{1}, e_{2}$|$\lnot e_{1}, e_{2}$|$e_{2}$|\done|\done} \dpllClause{4}{$e_{2}, e_{3}$}{$e_{2}, e_{3}$|$e_{2}, e_{3}$|$e_{2}, e_{3}$|\done|\done} \dpllClause{5}{$\lnot e_{2}, e_{1}$}{$\lnot e_{2}, e_{1}$|$\lnot e_{2}, e_{1}$|\done|\done|\done} \dpllClause{6}{$\lnot e_{3}, \lnot e_{1}$}{$\lnot e_{3}, \lnot e_{1}$|$\lnot e_{3}, \lnot e_{1}$|$\lnot e_{3}$|$\lnot e_{3}$|\done} \dpllClause{7}{$e_{0}, e_{1}$}{$e_{0}, e_{1}$|\done|\done|\done|\done} \dpllClause{8}{$e_{0}, \lnot e_{1}, \lnot e_{2}, e_{3}$}{\makecell{$e_{0}, \lnot e_{1}, \lnot e_{2}, $ \\ $e_{3}$}|\done|\done|\done|\done} \dpllClause{9}{$e_{0}$}{$e_{0}$|\done|\done|\done|\done} \dpllBCP{$e_{0}$|$e_{1}$|$e_{2}$|$\lnot e_{3}$| - } \dpllPL{ - | - | - | - | - } \dpllDeci{ - | - | - | - |SAT} \end{dplltabular} }
$\Model_{\EUF} := (a = b) \land (a = f(a)) \land (b = f(a)) \land (d \neq a) $ \\ Check if the assignment is consistent with the theory:
\begin{align*} &\{a, b\}, \{a, f(a)\}, \{b, f(a)\}, \{d\}\\ &\{d\}, \{a, b, f(a)\} \end{align*}
$\Model_{\EUF}$ is consistent with the theory, \\$\Rightarrow \Model_{\EUF}$ is a satisfying assignment and $\varphi$ is SAT.
|