|
|
We start by translating $\varphi$ to $\hat{\varphi} = \skel$ and assign the following variables to the theory literals: \begin{itemize} \item $e_{0}\Leftrightarrow(f(x)=x)$ \item $e_{1}\Leftrightarrow(f(x)=y)$ \item $e_{2}\Leftrightarrow(x=y)$ \item $e_{3}\Leftrightarrow(z=f(x))$ \end{itemize}
$\hat{\varphi} = (\clause{e_{0}; e_{1}; e_{2}}) \land (\clause{\lnot e_{0}; e_{1}}) \land (\clause{\lnot e_{1}; e_{2}}) \land (\clause{e_{2}; e_{3}}) \land (\clause{\lnot e_{2}; e_{1}}) \land (\clause{\lnot e_{3}; \lnot e_{1}}) $
\hspace{-0.09cm}\scalebox{0.85}{ \begin{dplltabular}{4} \dpllStep{1|2|3|4} \dpllDecL{0|1|2|2} \dpllAssi{ - |$\lnot e_{0}$|$\lnot e_{0}, \lnot e_{1}$|$\lnot e_{0}, \lnot e_{1}, \lnot e_{2}$} \dpllClause{1}{$e_{0}, e_{1}, e_{2}$}{$e_{0}, e_{1}, e_{2}$|$e_{1}, e_{2}$|$e_{2}$|\conflict} \dpllClause{2}{$\lnot e_{0}, e_{1}$}{$\lnot e_{0}, e_{1}$|\done|\done|\done} \dpllClause{3}{$\lnot e_{1}, e_{2}$}{$\lnot e_{1}, e_{2}$|$\lnot e_{1}, e_{2}$|\done|\done} \dpllClause{4}{$e_{2}, e_{3}$}{$e_{2}, e_{3}$|$e_{2}, e_{3}$|$e_{2}, e_{3}$|$e_{3}$} \dpllClause{5}{$\lnot e_{2}, e_{1}$}{$\lnot e_{2}, e_{1}$|$\lnot e_{2}, e_{1}$|$\lnot e_{2}$|\done} \dpllClause{6}{$\lnot e_{3}, \lnot e_{1}$}{$\lnot e_{3}, \lnot e_{1}$|$\lnot e_{3}, \lnot e_{1}$|\done|\done} \dpllBCP{ - | - |$\lnot e_{2}$| - } \dpllPL{ - | - | - | - } \dpllDeci{$\lnot e_{0}$|$\lnot e_{1}$| - | - } \end{dplltabular} }
Conflict in step 4\\ \scalebox{0.75}{
\begin{tikzpicture}[>=latex,line join=bevel,] \pgfsetlinewidth{1bp} %%
\pgfsetcolor{black} % Edge: 1 -> 4
\draw [->] (21.08bp,83.506bp) .. controls (26.44bp,80.758bp) and (33.44bp,77.508bp) .. (40.0bp,75.5bp) .. controls (51.601bp,71.949bp) and (65.006bp,69.732bp) .. (85.898bp,67.281bp); \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (54.0bp,83.0bp) node {$$1$$}; % Edge: 1 -> 5
\draw [->] (21.966bp,90.636bp) .. controls (35.227bp,93.477bp) and (58.98bp,98.567bp) .. (86.047bp,104.37bp); \draw (54.0bp,107.0bp) node {$$5$$}; % Edge: 2 -> 4
\draw [->] (21.717bp,33.396bp) .. controls (33.05bp,36.904bp) and (52.243bp,43.253bp) .. (68.0bp,50.5bp) .. controls (71.462bp,52.092bp) and (75.062bp,53.969bp) .. (87.382bp,61.048bp); \draw (54.0bp,58.0bp) node {$$1$$}; % Edge: 4 -> 3
\draw [->] (107.67bp,69.723bp) .. controls (115.24bp,72.246bp) and (126.02bp,75.839bp) .. (145.09bp,82.197bp); % Edge: 5 -> 3
\draw [->] (107.67bp,102.94bp) .. controls (115.41bp,100.08bp) and (126.51bp,95.995bp) .. (145.47bp,89.01bp); % Node: 1
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (11.0bp,88.5bp) ellipse (11.0bp and 11.0bp); \draw (11.0bp,88.5bp) node {$\lnot e_{1}$}; \end{scope} % Node: 4
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (97.0bp,66.5bp) ellipse (11.0bp and 11.0bp); \draw (97.0bp,66.5bp) node {$e_{2}$}; \end{scope} % Node: 5
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (97.0bp,106.5bp) ellipse (11.0bp and 11.0bp); \draw (97.0bp,106.5bp) node {$\lnot e_{2}$}; \end{scope} % Node: 2
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (11.0bp,30.5bp) ellipse (11.0bp and 11.0bp); \draw (11.0bp,30.5bp) node {$\lnot e_{0}$}; \end{scope} % Node: 3
\begin{scope} \definecolor{strokecol}{rgb}{0.0,0.0,0.0}; \pgfsetstrokecolor{strokecol} \draw (156.0bp,85.5bp) ellipse (11.0bp and 11.0bp); \draw (156.0bp,85.5bp) node {$\bot$}; \end{scope} %
\end{tikzpicture}
} \begin{prooftree} \AxiomC{$1. \; e_{0} \lor e_{1} \lor e_{2}$} \AxiomC{$5. \; \lnot e_{2} \lor e_{1}$} \BinaryInfC{$e_{0} \lor e_{1}$} \end{prooftree}
\hspace{-0.09cm}\scalebox{0.85}{ \begin{dplltabular}{4} \dpllStep{5|6|7|8} \dpllDecL{1|1|1|1} \dpllAssi{$\lnot e_{0}$|$\lnot e_{0}, e_{1}$|$\lnot e_{0}, e_{1}, e_{2}$|\makecell{$\lnot e_{0}, e_{1}, e_{2}, $ \\ $\lnot e_{3}$}} \dpllClause{1}{$e_{0}, e_{1}, e_{2}$}{$e_{1}, e_{2}$|\done|\done|\done} \dpllClause{2}{$\lnot e_{0}, e_{1}$}{\done|\done|\done|\done} \dpllClause{3}{$\lnot e_{1}, e_{2}$}{$\lnot e_{1}, e_{2}$|$e_{2}$|\done|\done} \dpllClause{4}{$e_{2}, e_{3}$}{$e_{2}, e_{3}$|$e_{2}, e_{3}$|\done|\done} \dpllClause{5}{$\lnot e_{2}, e_{1}$}{$\lnot e_{2}, e_{1}$|\done|\done|\done} \dpllClause{6}{$\lnot e_{3}, \lnot e_{1}$}{$\lnot e_{3}, \lnot e_{1}$|$\lnot e_{3}$|$\lnot e_{3}$|\done} \dpllClause{7}{$e_{0}, e_{1}$}{$e_{1}$|\done|\done|\done} \dpllBCP{$e_{1}$|$e_{2}$|$\lnot e_{3}$| - } \dpllPL{ - | - | - | - } \dpllDeci{ - | - | - | - } \end{dplltabular} }
$\Model_{\EUF} := (f(x) \neq x) \land (f(x) = y) \land (x = y) \land (z \neq f(x)) $ \\ Check if the assignment is consistent with the theory:
\begin{align*} &\{f(x), y\}, \{x, y\}, \{z\}\\ &\{z\}, \{f(x), x, y\} \end{align*}
$\Model_{\EUF}$ is not consistent with the theory, because of: $(f(x) \neq x) $\\ $\Rightarrow$ We need to add a blocking clause from $\Model_{\EUF}: \\ $ $BC :=e_{0} \lor \neg e_{1} \lor \neg e_{2} \lor e_{3}$\\
|