You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

98 lines
3.7 KiB

6 months ago
  1. Conflict in step 8\\
  2. \scalebox{0.75}{
  3. \begin{tikzpicture}[>=latex,line join=bevel,]
  4. \pgfsetlinewidth{1bp}
  5. %%
  6. \pgfsetcolor{black}
  7. % Edge: 1 -> 4
  8. \draw [->] (22.3bp,31.0bp) .. controls (35.47bp,31.0bp) and (58.583bp,31.0bp) .. (85.878bp,31.0bp);
  9. \definecolor{strokecol}{rgb}{0.0,0.0,0.0};
  10. \pgfsetstrokecolor{strokecol}
  11. \draw (54.0bp,38.5bp) node {$$7$$};
  12. % Edge: 3 -> 2
  13. \draw [->] (193.67bp,47.438bp) .. controls (201.41bp,44.585bp) and (212.51bp,40.495bp) .. (231.47bp,33.51bp);
  14. % Edge: 4 -> 3
  15. \draw [->] (107.97bp,33.373bp) .. controls (121.23bp,36.53bp) and (144.98bp,42.186bp) .. (172.05bp,48.63bp);
  16. \draw (140.0bp,50.5bp) node {$$5$$};
  17. % Edge: 4 -> 5
  18. \draw [->] (107.11bp,26.371bp) .. controls (112.48bp,23.828bp) and (119.48bp,20.828bp) .. (126.0bp,19.0bp) .. controls (137.65bp,15.733bp) and (151.06bp,13.758bp) .. (171.92bp,11.639bp);
  19. \draw (140.0bp,26.5bp) node {$$8$$};
  20. % Edge: 5 -> 2
  21. \draw [->] (193.67bp,14.223bp) .. controls (201.24bp,16.746bp) and (212.02bp,20.339bp) .. (231.09bp,26.697bp);
  22. % Node: 1
  23. \begin{scope}
  24. \definecolor{strokecol}{rgb}{0.0,0.0,0.0};
  25. \pgfsetstrokecolor{strokecol}
  26. \draw (11.0bp,31.0bp) ellipse (11.0bp and 11.0bp);
  27. \draw (11.0bp,31.0bp) node {$\lnot e_{0}$};
  28. \end{scope}
  29. % Node: 4
  30. \begin{scope}
  31. \definecolor{strokecol}{rgb}{0.0,0.0,0.0};
  32. \pgfsetstrokecolor{strokecol}
  33. \draw (97.0bp,31.0bp) ellipse (11.0bp and 11.0bp);
  34. \draw (97.0bp,31.0bp) node {$e_{1}$};
  35. \end{scope}
  36. % Node: 2
  37. \begin{scope}
  38. \definecolor{strokecol}{rgb}{0.0,0.0,0.0};
  39. \pgfsetstrokecolor{strokecol}
  40. \draw (242.0bp,30.0bp) ellipse (11.0bp and 11.0bp);
  41. \draw (242.0bp,30.0bp) node {$\bot$};
  42. \end{scope}
  43. % Node: 3
  44. \begin{scope}
  45. \definecolor{strokecol}{rgb}{0.0,0.0,0.0};
  46. \pgfsetstrokecolor{strokecol}
  47. \draw (183.0bp,51.0bp) ellipse (11.0bp and 11.0bp);
  48. \draw (183.0bp,51.0bp) node {$e_{2}$};
  49. \end{scope}
  50. % Node: 5
  51. \begin{scope}
  52. \definecolor{strokecol}{rgb}{0.0,0.0,0.0};
  53. \pgfsetstrokecolor{strokecol}
  54. \draw (183.0bp,11.0bp) ellipse (11.0bp and 11.0bp);
  55. \draw (183.0bp,11.0bp) node {$\lnot e_{2}$};
  56. \end{scope}
  57. %
  58. \end{tikzpicture}
  59. }
  60. \begin{prooftree}
  61. \AxiomC{$5. \; \lnot e_{1} \lor e_{2}$}
  62. \AxiomC{$8. \; e_{0} \lor \lnot e_{1} \lor \lnot e_{2}$}
  63. \BinaryInfC{$\lnot e_{1} \lor e_{0}$}
  64. \AxiomC{$7. \; e_{0} \lor e_{1}$}
  65. \BinaryInfC{$e_{0}$}
  66. \end{prooftree}
  67. \hspace{-0.09cm}\scalebox{0.85}{
  68. \begin{dplltabular}{4}
  69. \dpllStep{9|10|11|12}
  70. \dpllDecL{0|0|0|0}
  71. \dpllAssi{ - |$e_{0}$|$e_{0}, e_{3}$|$e_{0}, e_{3}, e_{2}$}
  72. \dpllClause{1}{$e_{0}, e_{1}, \lnot e_{2}$}{$e_{0}, e_{1}, \lnot e_{2}$|\done|\done|\done}
  73. \dpllClause{2}{$e_{2}, e_{3}, e_{0}$}{$e_{2}, e_{3}, e_{0}$|\done|\done|\done}
  74. \dpllClause{3}{$\lnot e_{0}, e_{3}$}{$\lnot e_{0}, e_{3}$|$e_{3}$|\done|\done}
  75. \dpllClause{4}{$e_{2}, \lnot e_{3}, \lnot e_{0}$}{$e_{2}, \lnot e_{3}, \lnot e_{0}$|$e_{2}, \lnot e_{3}$|$e_{2}$|\done}
  76. \dpllClause{5}{$\lnot e_{1}, e_{2}$}{$\lnot e_{1}, e_{2}$|$\lnot e_{1}, e_{2}$|$\lnot e_{1}, e_{2}$|\done}
  77. \dpllClause{6}{$\lnot e_{1}, e_{2}, \lnot e_{3}$}{$\lnot e_{1}, e_{2}, \lnot e_{3}$|$\lnot e_{1}, e_{2}, \lnot e_{3}$|$\lnot e_{1}, e_{2}$|\done}
  78. \dpllClause{7}{$e_{0}, e_{1}$}{$e_{0}, e_{1}$|\done|\done|\done}
  79. \dpllClause{8}{$e_{0}, \lnot e_{1}, \lnot e_{2}$}{$e_{0}, \lnot e_{1}, \lnot e_{2}$|\done|\done|\done}
  80. \dpllClause{9}{$e_{0}$}{$e_{0}$|\done|\done|\done}
  81. \dpllBCP{$e_{0}$|$e_{3}$|$e_{2}$| - }
  82. \dpllPL{ - | - | - | - }
  83. \dpllDeci{ - | - | - |SAT}
  84. \end{dplltabular}
  85. }
  86. $\Model_{\EUF} := (f(a) = b) \land (b = c) \land (a = b) $ \\
  87. Check if the assignment is consistent with the theory:
  88. \begin{align*}
  89. &\{f(a), b\}, \{b, c\}, \{a, b\}\\
  90. &\{a, b, c, f(a)\}
  91. \end{align*}
  92. $\Model_{\EUF}$ is consistent with the theory, \\
  93. $\Rightarrow$ $\Model_{\EUF}$ is a satisfying assignment and $\varphi$ is SAT.