You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
First Conflict in Step 6: \\ \begin{conflictgraph} \node[base node] (notA) {$\lnot a$}; \node[base node] (notB) [below of=notA] {$\lnot b$}; \node[base node] (C) [right of=notB] {$c$}; \node[base node] (notE) [above right of=C] {$\lnot e$}; \node[base node] (D) [above right of=notE] {$d$}; \node[base node] (notD) [below right of=notE] {$\lnot d$}; \node[base node] (bot) [below right of=D] {$\bot$}; \path[] (notA) edge [] node {$6$} (notE) (notB) edge [] node {$2$} (C) (C) edge [] node {$6$} (notE) (notE) edge [] node {$4$} (D) (notE) edge [] node {$5$} (notD) (notD) edge [] node {} (bot) (D) edge [] node {} (bot); \end{conflictgraph} \begin{prooftree} \AxiomC{$4. \; \lnot d \lor e$} \AxiomC{$5. \; d \lor e$} \BinaryInfC{$e$} \AxiomC{$6. \; a \lor \lnot c \lor \lnot e$} \BinaryInfC{$a \lor \lnot c$} \AxiomC{$2. \; b \lor c$} \BinaryInfC{$ a \lor b$} \end{prooftree} \vspace{1cm}
Second Conflict in Step 11: \\ \begin{conflictgraph} \node[base node] (notA) {$\lnot a$}; \node[base node] (B) [right of=notA] {$b$}; \node[base node] (notD) [right of=B] {$\lnot d$}; \node[base node] (E) [right of=notD] {$e$}; \node[base node] (C) [below of=E] {$c$}; \node[base node] (notE) [right of=C] {$\lnot e$}; \node[base node] (bot) [above right of=notE] {$\bot$}; \path[] (notA) edge [] node {$8$} (B) (B) edge [] node {$3$} (notD) (notD) edge [] node {$5$} (E) (notD) edge [] node {$7$} (C) (C) edge [] node {$6$} (notE) (notE) edge [] node {} (bot) (E) edge [] node {} (bot); \end{conflictgraph}
\begin{prooftree} \AxiomC{$6. \; a \lor \lnot c \lor \lnot e$} \AxiomC{$7. \; \lnot b \lor c \lor d$} \BinaryInfC{$a \lor \lnot b \lor d \lor \lnot e$} \AxiomC{$5. \; d \lor e$} \BinaryInfC{$a \lor \lnot b \lor d$} \AxiomC{$3. \; \lnot b \lor \lnot d$} \BinaryInfC{$ a \lor \lnot b$} \AxiomC{$8. \; a \lor b$} \BinaryInfC{$a$} \end{prooftree} \vspace{1cm}
Second Conflict in Step 16: \\ \begin{conflictgraph} \node (0) {}; \node[base node] (A) [right of=0] {$a$}; \node[base node] (notC) [right of=A] {$\lnot c$}; \node[base node] (B) [right of=notC] {$b$}; \node[base node] (notD) [right of=B] {$\lnot d$}; \node[base node] (D) [below of=notD] {$d$}; \node[base node] (bot) [above right of=D] {$\bot$}; \path[] (0) edge [] node {$9$} (A) (A) edge [] node {$1$} (notC) (notC) edge [] node {$2$} (B) (B) edge [] node {$3$} (D) (B) edge [] node {$7$} (notD) (notD) edge [] node {} (bot) (D) edge [] node {} (bot); \end{conflictgraph}
\begin{prooftree} \AxiomC{$7. \; \lnot b \lor c \lor d$} \AxiomC{$3. \; \lnot b \lor \lnot d$} \BinaryInfC{$\lnot b \lor c$} \AxiomC{$2. \; b \lor c$} \BinaryInfC{$c$} \AxiomC{$1. \; \lnot a \lor \lnot c$} \BinaryInfC{$\lnot a$} \AxiomC{$9. \; a$} \BinaryInfC{$\bot$} \end{prooftree}
|