You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
\item Consider the following natural deduction proof for the sequent $$\exists x \; \lnot P(x) \quad \ent \quad \lnot \forall x \; P(x).$$ Is the proof correct? If not, explain the error in the proof and either show how to correctly prove the sequent, or give a counterexample that proves the sequent invalid.
\setlength\subproofhorizspace{1em} \begin{logicproof}{1} \exists x \; \lnot P(x) & prem.\\ \begin{subproof} \forall x \; P(x) & ass.\\ P(x_0) & $\forall \mathrm{e}$ 2\\ \exists x \; P(x) & $\exists \mathrm{i}$ 3\\ \bot & $\lnot \mathrm{e}$ 1,4 \end{subproof} \lnot \forall x \; P(x) & $\lnot \mathrm{e}$ 2-5 \end{logicproof}
|