|
|
\begin{dplltabular}{6} \dpllStep{1|2|3|4|5|6} \dpllDecL{0|1|2|2|2|2}
\dpllAssi{-| $\lnot a$| $\lnot a, \lnot b$| $\lnot a, \lnot b, e$| \makecell{$\lnot a, \lnot b, e$,\\ $\lnot c$}| \makecell{$\lnot a, \lnot b, e$,\\ $\lnot c, \lnot d $}}
\dpllClause{1}{$a, \lnot c, \lnot e$} {$a, \lnot c, \lnot e$|$\lnot c,\lnot e$|$\lnot c,\lnot e$|$\lnot c$|\done|\done}
\dpllClause{2}{$\lnot a, \lnot e$} {$\lnot a, \lnot e$|\done|\done|\done|\done|\done}
\dpllClause{3}{$b,e$} {$b,e$|$b,e$|$e$|\done|\done|\done}
\dpllClause{4}{$\lnot b,d,e$} {$\lnot b,d,e$|$\lnot b,d,e$|\done|\done|\done|\done}
\dpllClause{5}{$\lnot b,\lnot d$} {$\lnot b,\lnot d$|$\lnot b,\lnot d$|\done|\done|\done|\done}
\dpllClause{6}{$c,\lnot d$} {$c,\lnot d$|$c,\lnot d$|$c,\lnot d$|$c,\lnot d$|$\lnot d$|\done}
\dpllClause{7}{$c,d$} {$c,d$|$c,d$|$c,d$|$c,d$|$d$|\conflict}
\dpllBCP {-|-|$e$|$\lnot c$|$\lnot d$|-} \dpllPL {-|-|-|-|-|-} \dpllDeci{$\lnot a$|$\lnot b$|-|-|-|-} \end{dplltabular}
\begin{conflictgraph} \node[base node] (notA) {$\lnot a$}; \node[base node] (notB) [below of=notA] {$\lnot b$}; \node[base node] (E) [right of=notB] {$e$}; \node[base node] (notC) [above right of=E] {$\lnot c$}; \node[base node] (D) [above right of=notC] {$d$}; \node[base node] (notD) [below right of=notC] {$\lnot d$}; \node[base node] (bot) [above right of=notD] {$\bot$}; \path[] (notB) edge [] node {$3$} (E) (notA) edge [] node {$1$} (notC) (E) edge [] node {$1$} (notC) (notC) edge [] node {$6$} (notD) (notC) edge [] node {$7$} (D) (notD) edge [] node {} (bot) (D) edge [] node {} (bot); \end{conflictgraph}
\begin{prooftree} \AxiomC{$6. \; c \lor \lnot d$} \AxiomC{$7. \; c \lor d$} \BinaryInfC{$c$} \AxiomC{$1. \; a\lor\lnot c \lor\lnot e$} \BinaryInfC{$a\lor\lnot e$} \AxiomC{$3. \; b \lor e$} \BinaryInfC{$a \lor b$} \end{prooftree}
\begin{dplltabular}{6} \dpllStep{(2)|7|8|9|10} \dpllDecL{1 |1|1|1|1}
\dpllAssi{$\lnot a$| $\lnot a, b$| $\lnot a, b, \lnot d$| \makecell{$\lnot a, b, \lnot d$,\\ $c$}| \makecell{$\lnot a, b, \lnot d$,\\ $c, \lnot e $}}
\dpllClause{1}{$a, \lnot c, \lnot e$} {$\lnot c, \lnot e$|$\lnot c, \lnot e$|$\lnot c, \lnot e$|$\lnot e$|\done}
\dpllClause{2}{$\lnot a, \lnot e$} {\done|\done|\done|\done|\done}
\dpllClause{3}{$b,e$} {$b,e$|\done|\done|\done|\done}
\dpllClause{4}{$\lnot b,d,e$} {$\lnot b,d,e$|$d,e$|$e$|$e$|\conflict}
\dpllClause{5}{$\lnot b,\lnot d$} {$\lnot b,\lnot d$|$\lnot d$|\done|\done|\done}
\dpllClause{6}{$c,\lnot d$} {$c,\lnot d$|$c,\lnot d$|\done|\done|\done}
\dpllClause{7}{$c,d$} {$c,d$|$c,d$|$c$|\done|\done}
\dpllClause{8}{$a,b$} {$b$|\done|\done|\done|\done}
\dpllBCP {$b$|$\lnot d$|$c$|$\lnot e$|-} \dpllPL {-|-|-|-|-} \dpllDeci{-|-|-|-|-} \end{dplltabular}
\begin{conflictgraph} \node[base node] (notA) {$\lnot a$}; \node[base node] (B) [right of=notA] {$b$}; \node[base node] (notD) [right of=B] {$\lnot d$}; \node[base node] (C) [right of=notD] {$c$}; \node[base node] (notE) [below of=C] {$\lnot e$}; \node[base node] (E) [above of=C] {$e$}; \node[base node] (bot) [right of=C] {$\bot$}; \path[] (notA) edge [] node {8} (B) (B) edge [] node {5} (notD) (notA) edge [bend right] node {1} (notE) (C) edge [] node {1} (notE) (notD) edge [] node {7} (C) (notD) edge [] node {4} (E) (B) edge [bend left] node {4} (E) (notE) edge [] node {} (bot) (E) edge [] node {} (bot); \end{conflictgraph}
|