|
|
\begin{conflictgraph} \node[base node] (notA) {$\lnot a$}; \node[base node] (B) [right of=notA] {$b$}; \node[base node] (C) [right of=B] {$c$}; \node[base node] (D) [below right of=C] {$d$}; \node[base node] (E) [right of=C] {$e$}; \node[base node] (notE) [right of=D] {$\lnot e$}; \node[base node] (bot) [above right of=notE] {$\bot$}; \path[] (notA) edge [] node {$7$} (B) (B) edge [] node {$3$} (C) (C) edge [] node {$4$} (D) (C) edge [] node {$5$} (E) (D) edge [] node {$6$} (notE) (notE) edge [] node {} (bot) (E) edge [] node {} (bot); \end{conflictgraph}
\begin{prooftree} \AxiomC{$6. \; \lnot d \lor \lnot e$} \AxiomC{$4. \; \lnot c \lor d$} \BinaryInfC{$\lnot e \lor \lnot c$} \AxiomC{$5. \; \lnot c \lor e$} \BinaryInfC{$\lnot c$} \AxiomC{$3. \; \lnot b \lor c$} \BinaryInfC{$\lnot b$} \AxiomC{$7. \; a \lor b$} \BinaryInfC{$a$} \end{prooftree}
\begin{dplltabular}{9} \dpllStep{(1)|11|12|13|14|15} \dpllDecL{0 |0 |0 |0 |0 |0}
\dpllAssi{-| $a$| $a, b$| $a, b, c$| $a, b, c, d$| $a, b, c, d, \lnot e$}
\dpllClause{1}{$a,b,c$} {$a,b,c$|\done|\done|\done|\done|\done}
\dpllClause{2}{$\lnot a,b$} {$\lnot a, b$|$b$|\done|\done|\done|\done}
\dpllClause{3}{$\lnot b, c$} {$\lnot b, c$|$\lnot b,c$|$c$|\done|\done|\done}
\dpllClause{4}{$\lnot c,d$} {$\lnot c,d$|$\lnot c,d$|$\lnot c,d$|$d$|\done|\done}
\dpllClause{5}{$\lnot c,e$} {$\lnot c,e$|$\lnot c,e$|$\lnot c,e$|$e$|$e$|\conflict}
\dpllClause{6}{$\lnot d, \lnot e$} {$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot e$|$\lnot e$|\done}
\dpllClause{7}{$a, b$} {$a,b$|\done|\done|\done|\done|\done}
\dpllClause{8}{$a$} {$a$|\done|\done|\done|\done|\done}
\dpllBCP {$a$|$b$|$c$|$d$|$\lnot e$|-} \dpllPL {-|-|-|-|-|-} \dpllDeci{-|-|-|-|-|UNSAT} \end{dplltabular}
\begin{conflictgraph} \node (0){}; \node[base node] (A) [right of=0] {$a$}; \node[base node] (B) [right of=A] {$b$}; \node[base node] (C) [right of=B] {$c$}; \node[base node] (D) [below right of=C] {$d$}; \node[base node] (E) [right of=C] {$e$}; \node[base node] (notE) [right of=D] {$\lnot e$}; \node[base node] (bot) [above right of=notE] {$\bot$}; \path[] (0) edge [] node {8} (A) (A) edge [] node {2} (B) (B) edge [] node {3} (C) (C) edge [] node {4} (D) (C) edge [] node {5} (E) (D) edge [] node {6} (notE) (notE) edge [] node {} (bot) (E) edge [] node {} (bot); \end{conflictgraph}
\begin{prooftree} \AxiomC{$6. \; \lnot d \lor \lnot e$} \AxiomC{$4. \; \lnot c \lor d$} \BinaryInfC{$\lnot e \lor \lnot c$} \AxiomC{$5. \; \lnot c \lor e$} \BinaryInfC{$\lnot c$} \AxiomC{$3. \; \lnot b \lor c$} \BinaryInfC{$\lnot b$} \AxiomC{$2. \; \lnot a \lor b$} \BinaryInfC{$\lnot a$} \AxiomC{$8. \; a$} \BinaryInfC{$\bot$} \end{prooftree}
|