|
|
\begin{dplltabular}{9} \dpllStep{1|2|3|4|5} \dpllDecL{0|1|1|1|1}
\dpllAssi{-| $\lnot a$| $\lnot a, \lnot b$| $\lnot a, \lnot b, \lnot c$| $\lnot a,\lnot b, \lnot c, \lnot d$}
\dpllClause{1}{$\lnot a,c$} {$\lnot a,c$|\done|\done|\done|\done} \dpllClause{2}{$\lnot a, b, \lnot c$} {$\lnot a, b, \lnot c$|\done|\done|\done|\done}
\dpllClause{3}{$\lnot b, e$} {$\lnot b, e$|$\lnot b, e$|\done|\done|\done}
\dpllClause{4}{$a, d$} {$a, d$|$d$|$d$|$d$|\conflict}
\dpllClause{5}{$a, \lnot c$} {$a, \lnot c$|$\lnot c$|$\lnot c$|\done|\done}
\dpllClause{6}{$\lnot a, \lnot e$} {$\lnot a, \lnot e$|\done|\done|\done|\done}
\dpllClause{7}{$a, \lnot b$} {$a, \lnot b$|$\lnot b$|\done|\done|\done}
\dpllClause{8}{$b, \lnot d$} {$b, \lnot d$|$b, \lnot d$|$\lnot d$|$\lnot d$|\done}
\dpllBCP{-|$\lnot b$|$\lnot c$|$\lnot d$|-} \dpllPL{-|-|-|-|-} \dpllDeci{$\lnot a$|-|-|-|-} \end{dplltabular}
\begin{conflictgraph} \node[base node] (notA) {$\lnot a$}; \node[base node] (notB) [right of=notA] {$\lnot b$}; \node[base node] (notD) [right of=notB] {$\lnot d$}; \node[base node] (D) [above of=notD] {$d$}; \node[base node] (bot) [below right of=D] {$\bot$}; \path[] (notA) edge [] node {$7$} (notB) (notA) edge [] node {$4$} (D) (notB) edge [] node {$8$} (notD) (notD) edge [] node {} (bot) (D) edge [] node {} (bot); \end{conflictgraph} \begin{prooftree} \AxiomC{$8. \; b \lor \lnot d$} \AxiomC{$4. \; a \lor d$} \BinaryInfC{$a \lor b$} \AxiomC{$7. \; a \lor \lnot b $} \BinaryInfC{$a$} \end{prooftree}
\begin{dplltabular}{9} \dpllStep{(1)|6|7|8|9} \dpllDecL{0 |0|0|0|0}
\dpllAssi{-| $a$| $a,c$| $a,c,b$| $a,c,b,\lnot e$}
\dpllClause{1}{$\lnot a,c$} {$\lnot a,c$|$c$|\done|\done|\done}
\dpllClause{2}{$\lnot a, b, \lnot c$} {$\lnot a, b, \lnot c$|$b,\lnot c$|$b$|\done|\done}
\dpllClause{3}{$\lnot b, e$} {$\lnot b, e$|$\lnot b, e$|$\lnot b,e$|$e$|\conflict}
\dpllClause{4}{$a, d$} {$a, d$|\done|\done|\done|\done}
\dpllClause{5}{$a, \lnot c$} {$a, \lnot c$|\done|\done|\done|\done}
\dpllClause{6}{$\lnot a, \lnot e$} {$\lnot a, \lnot e$|$\lnot e$|$\lnot e$|$\lnot e$|\done}
\dpllClause{7}{$a, \lnot b$} {$a, \lnot b$|\done|\done|\done|\done}
\dpllClause{8}{$b, \lnot d$} {$b, \lnot d$|$b,\lnot d$|$b,\lnot d$|\done|\done}
\dpllClause{9}{$a$} {$a$|\done|\done|\done|\done}
\dpllBCP{$a$|$c$|$b$|$\lnot e$|-} \dpllPL{-|-|-|-|-} \dpllDeci{-|-|-|-|UNSAT} \end{dplltabular}
\begin{conflictgraph} \node (0) {}; \node[base node] (A) [right of=0] {$a$}; \node[base node] (C) [right of=A] {$c$}; \node[base node] (B) [right of=C] {$b$}; \node[base node] (E) [right of=B] {$e$}; \node[base node] (notE) [below right of=A] {$\lnot e$}; \node[base node] (bot) [below of=E] {$\bot$}; \path[] (0) edge [] node {$9$} (A) (A) edge [] node {$1$} (C) (A) edge [bend left] node {$2$} (B) (C) edge [] node {$2$} (B) (B) edge [] node {$3$} (E) (A) edge [] node {$6$} (notE) (E) edge [] node {} (bot) (notE) edge [] node {} (bot); \end{conflictgraph} \begin{prooftree} \AxiomC{$3. \; \clause{\lnot b;e}$} \AxiomC{$6. \; \clause{\lnot a;\lnot e}$} \BinaryInfC{$\clause{\lnot a;\lnot b}$} \AxiomC{$2. \; \clause{\lnot a;b;\lnot c}$} \BinaryInfC{$\clause{\lnot a;\lnot c}$} \AxiomC{$1. \; \clause{\lnot a;c}$} \BinaryInfC{$\clause{\lnot a}$} \AxiomC{$9. \; \clause{a}$} \BinaryInfC{$\bot$} \end{prooftree}
|