|
|
DPLL algorithm:
\scalebox{1}{ \begin{tabular}{|l|c|c|c|c|c|c|c|c|} \hline Step & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \hline Decision Level & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ \hline Assignment & - & $\lnot a$ & $\lnot a,c$ & $\lnot a,b,c$ & $\lnot a,b,c,e$ & - & $\lnot b$ & $\lnot b, f$ \\ \hline Cl. 1: $\lnot a,d$ & 1 & \cmark & \cmark & \cmark & \cmark & 1 & 1 & 1 \\ \hline Cl. 2: $\lnot d,c$ & 2 & 2 & \cmark & \cmark & \cmark & 2 & 2 & 2 \\ \hline Cl. 3: $\lnot b,e$ & 3 & 3 & 3 & $e$ & \cmark & 3 & \cmark & \cmark \\ \hline Cl. 4: $\lnot b,\lnot e$ & 4 & 4 & 4 & $\lnot e$ & $\{\}$ \xmark & 4 & \cmark & \cmark \\ \hline Cl. 5: $b,f$ & 5 & 5 & 5 & \cmark & \cmark & 5 & $f$ & \cmark \\ \hline Cl. 6: $b,\lnot f$ & 6 & 6 & 6 & \cmark & \cmark & 6 & $\lnot f$ & $\{\}$ \xmark \\ \hline \textcolor{gray}{Cl. 7: $\lnot b$} & - & - & - & - & learned $\lnot b$ & 7 & \cmark & \cmark \\ \hline \hline BCP & - & - & - & $e$ & - & $\lnot b$ & $f$ & - \\ \hline PL & $\lnot a$ & $c$ & - & - & - & - & - & - \\ \hline Decision & - & - & $b$ & - & - & - & - & UNSAT \\ \hline \end{tabular}}
Ad 5:
\begin{center} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.5cm, thick,base node/.style={circle,draw,minimum size=20pt}, real node/.style={double,circle,draw,minimum size=20pt}]
\node[base node] (1) {$b$}; \node[base node] (2) [above right of=1] {$e$}; \node[base node] (3) [below right of=1] {$\lnot e$}; \node[base node] (4) [above right of=3] {$\bot$}; \path[] (1) edge [] node {$3$} (2) edge [] node {$4$} (3) (2) edge [] node {} (4) (3) edge [] node {} (4); \end{tikzpicture} \end{center}
\begin{prooftree} \AxiomC{$3. \; \lnot b \lor e$} \AxiomC{$4. \; \lnot b \lor \lnot e$} \BinaryInfC{$\lnot b$} \end{prooftree}
Ad 8:
\begin{center} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.5cm, thick,base node/.style={circle,draw,minimum size=20pt}, real node/.style={double,circle,draw,minimum size=20pt}]
\node (0) {}; \node[base node] (1) [right of=0] {$\lnot b$}; \node[base node] (2) [above right of=1] {$f$}; \node[base node] (3) [below right of=1] {$\lnot f$}; \node[base node] (4) [above right of=3] {$\bot$}; \path[] (0) edge [] node {$7$} (1) (1) edge [] node {$5$} (2) edge [] node {$6$} (3) (2) edge [] node {} (4) (3) edge [] node {} (4); \end{tikzpicture} \end{center}
\begin{prooftree} \AxiomC{$5. \; b \lor f$} \AxiomC{$6. \; b \lor \lnot f$} \BinaryInfC{$b$} \AxiomC{$7. \; \lnot b$} \BinaryInfC{$\bot$} \end{prooftree}
|