|
|
\begin{dplltabular}{6} \dpllStep{1|2|3|4|5|6} \dpllDecL{0|1|2|2|2|2}
\dpllAssi{-| $\lnot a$| $\lnot a, \lnot b$| $\lnot a, \lnot b, c$| $\lnot a, \lnot b, c, d$| $\lnot a, \lnot b, c, d, e$}
\dpllClause{1}{$a,b,c$} {$a,b,c$|$b,c$|$c$|\done|\done|\done}
\dpllClause{2}{$\lnot a,b$} {$\lnot a,b$|\done|\done|\done|\done|\done}
\dpllClause{3}{$\lnot b, c$} {$\lnot b, c$|$\lnot b, c$|\done|\done|\done|\done}
\dpllClause{4}{$\lnot c,d$} {$\lnot c,d$|$\lnot c,d$|$\lnot c,d$|$d$|\done|\done}
\dpllClause{5}{$\lnot c,e$} {$\lnot c,e$|$\lnot c,e$|$\lnot c,e$|$e$|$e$|\conflict}
\dpllClause{6}{$\lnot d, \lnot e$} {$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot e$|\done}
\dpllBCP {-|-|$c$|$d$|$\lnot e$|-} \dpllPL {-|-|-|-|-|-} \dpllDeci{$\lnot a$|$\lnot b$|-|-|-|-} \end{dplltabular}
\begin{conflictgraph} \node[base node] (notA) {$\lnot a$}; \node[base node] (notB) [below of=notA] {$\lnot b$}; \node[base node] (C) [right of=notA] {$c$}; \node[base node] (D) [below right of=C] {$d$}; \node[base node] (E) [right of=C] {$e$}; \node[base node] (notE) [right of=D] {$\lnot e$}; \node[base node] (bot) [above right of=notE] {$\bot$}; \path[] (notA) edge [] node {$1$} (C) (notB) edge [] node {$1$} (C) (C) edge [] node {$4$} (D) (C) edge [] node {$5$} (E) (D) edge [] node {$6$} (notE) (notE) edge [] node {} (bot) (E) edge [] node {} (bot); \end{conflictgraph}
\begin{prooftree} \AxiomC{$6. \; \lnot d \lor \lnot e$} \AxiomC{$4. \; \lnot c \lor d$} \BinaryInfC{$\lnot e \lor \lnot c$} \AxiomC{$5. \; \lnot c \lor e$} \BinaryInfC{$\lnot c$} \AxiomC{$1. \; a \lor b \lor c$} \BinaryInfC{$a \lor b$} \end{prooftree}
\begin{dplltabular}{9} \dpllStep{(2)|7|8|9|10} \dpllDecL{1 |1|1|1|1}
\dpllAssi{$\lnot a$| $\lnot a, b$| $\lnot a, b, c$| $\lnot a, b, c, d$| $\lnot a, b, c, d, \lnot e$}
\dpllClause{1}{$a,b,c$} {$b,c$|\done|\done|\done|\done}
\dpllClause{2}{$\lnot a,b$} {\done|\done|\done|\done|\done}
\dpllClause{3}{$\lnot b, c$} {$\lnot b, c$|$c$|\done|\done|\done}
\dpllClause{4}{$\lnot c,d$} {$\lnot c,d$|$\lnot c,d$|$d$|\done|\done}
\dpllClause{5}{$\lnot c,e$} {$\lnot c,e$|$\lnot c,e$|$e$|$e$|\conflict}
\dpllClause{6}{$\lnot d, \lnot e$} {$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot d, \lnot e$|$\lnot e$|\done}
\dpllClause{7}{$a, b$} {$b$|\done|\done|\done|\done}
\dpllBCP {$b$|$c$|$d$|$\lnot e$|-} \dpllPL {-|-|-|-|-} \dpllDeci{-|-|-|-|-} \end{dplltabular}
|