|
|
DPLL algorithm:
\scalebox{1}{ \setlength\tabcolsep{3pt} \begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|} \hline Step & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline \hline Decision Level & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline Assignment & - & $\lnot a$& $\lnot a,c$ & $\lnot a,b,c$ & $\lnot a,b,c,\lnot d$& - & $a$ &$a,\lnot b$ &$a,\lnot b,\lnot c$& $a,\lnot b,\lnot c,\lnot e$ \\ \hline Cl. 1: $\lnot a,\lnot b$ & 1 & \cmark & \cmark & \cmark & \cmark & 1 & $\lnot b$ & \cmark & \cmark & \cmark \\ \hline Cl. 2: $ a,c$ & 2 & $c$ & \cmark & \cmark & \cmark & 2 & \cmark & \cmark & \cmark & \cmark \\ \hline Cl. 3: $b,\lnot c$ & 3 & 3 & $b$ & \cmark & \cmark & 3 & 3 & $\lnot c$ & \cmark & \cmark \\ \hline Cl. 4: $\lnot b,d$ & 4 & 4 & 4 & $d$ & $\{\}$ \xmark & 4 & 4 & \cmark & \cmark & \cmark \\ \hline Cl. 5: $\lnot c,\lnot d$ & 5 & 5 & $\lnot d$ & $\lnot d$ & \cmark & 5 & 5 & 5 & \cmark & \cmark \\ \hline Cl. 6: $c,e$ & 6 & 6 & \cmark & \cmark & \cmark & 6 & 6 & 6 & $e$ & $\{\}$ \xmark \\ \hline Cl. 7: $c,\lnot e$ & 7 & 7 & \cmark & \cmark & \cmark & 7 & 7 & 7 & $\lnot e$ & \cmark \\ \hline \textcolor{gray}{Cl. 8: $a$}& - & - & - & - & learned $a$ & 8 & \cmark & \cmark & \cmark & \cmark \\ \hline \hline BCP & - & $c$ & $b$ & $\lnot d$ & - & $a$ & $\lnot b$ & $\lnot c$ & $\lnot e$ & - \\ \hline PL & - & - & - & - & - & - & - & - & - & - \\ \hline Decision & $\lnot a$& - & - & - & - & - & - & - & - & UNSAT \\ \hline \end{tabular}}
Ad 5:
\begin{center} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.5cm, thick,base node/.style={circle,draw,minimum size=20pt}, real node/.style={double,circle,draw,minimum size=20pt}]
\node[base node] (1) {$\lnot a$}; \node[base node] (2) [right of=1]{$c$}; \node[base node] (3) [below right of=2] {$\lnot d$}; \node[base node] (4) [above right of=2] {$b$}; \node[base node] (5) [right of=4] {$d$}; \node[base node] (6) [below right of=5] {$\bot$}; \path[] (1) edge [] node {$2$} (2) (2) edge [] node {$5$} (3) edge [] node {$3$} (4) (4) edge [] node {$4$} (5) (5) edge [] node {} (6) (3) edge [] node {} (6); \end{tikzpicture} \end{center}
\begin{prooftree} \AxiomC{$4. \; \lnot b \lor d$} \AxiomC{$5. \; \lnot c \lor \lnot d$} \BinaryInfC{$\lnot b \lor \lnot c$} \AxiomC{$3. \; b \lor \lnot c$} \BinaryInfC{$\lnot c$} \AxiomC{$2. \; a \lor c$} \BinaryInfC{$a$} \end{prooftree}
Ad 10:
\begin{center} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.5cm, thick,base node/.style={circle,draw,minimum size=20pt}, real node/.style={double,circle,draw,minimum size=20pt}]
\node (0) {}; \node[base node] (1) [right of=0]{$a$}; \node[base node] (2) [right of=1]{$\lnot b$}; \node[base node] (3) [right of=2] {$\lnot c$}; \node[base node] (4) [above right of=3] {$\lnot e$}; \node[base node] (5) [below right of=3] {$e$}; \node[base node] (6) [above right of=5] {$\bot$}; \path[] (0) edge [] node {$8$} (1) (1) edge [] node {$1$} (2) (2) edge [] node {$3$} (3) (3) edge [] node {$7$} (4) edge [] node {$6$} (5) (4) edge [] node {} (6) (5) edge [] node {} (6); \end{tikzpicture} \end{center}
\begin{prooftree} \AxiomC{$6. \; c \lor e$} \AxiomC{$7. \; c \lor \lnot e$} \BinaryInfC{$c$} \AxiomC{$3. \; b \lor \lnot c$} \BinaryInfC{$b$} \AxiomC{$1. \; \lnot a \lor \lnot b$} \BinaryInfC{$\lnot a$} \AxiomC{$8. \; a$} \BinaryInfC{$\bot$} \end{prooftree}
|