You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
\item \self Consider the propositional formula $\varphi = p \imp
(q \imp r)$.
\begin{enumerate} \item Fill out the truth table for $\varphi$ and its subformulas.
\begin{tabular}{|c|c|c||c|c|c|} \hline $p$&$q$&$r$&$(q \imp r)$&$\varphi=p \imp (q \imp r)$\\ \hline \hline \textbf{F} &\textbf{F} &\textbf{F} & & \\ \hline \textbf{F} &\textbf{F} &\textbf{T} & & \\ \hline \textbf{F} &\textbf{T} &\textbf{F} & & \\ \hline \textbf{F} &\textbf{T} &\textbf{T} & & \\ \hline \textbf{T} &\textbf{F} &\textbf{F} & & \\ \hline \textbf{T} &\textbf{F} &\textbf{T} & & \\ \hline \textbf{T} &\textbf{T} &\textbf{F} & & \\ \hline \textbf{T} &\textbf{T} &\textbf{T} & & \\ \hline \end{tabular}
\item Is $\varphi$ satisfiable? \item Give a formula $\psi$ that is semantically equivalent to $\varphi$, but does not use the ``$\imp$'' connective. \item How can you check whether $\psi$ is semantically equivalent to $\varphi$?
\end{enumerate}
|