You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
\item \self Consider the propositional formulas $\varphi = (p \lor q)
\rightarrow r$, and $\psi = r \lor (\neg p \land \neg q)$.
\begin{enumerate} \item Fill out the truth table for $\varphi$ and $\psi$ (and their subformulas).
\begin{tabular}{|c|c|c||c|c|c|c||c|c|} \hline $p$&$q$&$r$&$\neg p$&$\neg q$&$p \lor q$&$\neg p \land \neg q$&$\varphi$&$\psi$\\ \hline \hline \textbf{F} &\textbf{F} &\textbf{F} & \T& \T& \F& \T& \T& \T\\ \hline \textbf{F} &\textbf{F} &\textbf{T} & \T& \T& \F& \T& \T& \T\\ \hline \textbf{F} &\textbf{T} &\textbf{F} & \T& \F& \T& \F& \F& \F\\ \hline \textbf{F} &\textbf{T} &\textbf{T} & \T& \F& \T& \F& \T& \T\\ \hline \textbf{T} &\textbf{F} &\textbf{F} & \F& \T& \T& \F& \F& \F\\ \hline \textbf{T} &\textbf{F} &\textbf{T} & \F& \T& \T& \F& \T& \T\\ \hline \textbf{T} &\textbf{T} &\textbf{F} & \F& \F& \T& \F& \F& \F\\ \hline \textbf{T} &\textbf{T} &\textbf{T} & \F& \F& \T& \F& \T& \T\\ \hline \end{tabular}
\item Which of the formulas is satisfiable? \\ \quad Both are satisfiable. \item Which of the formulas is valid? \\ \quad Neither are valid. \item Is $\varphi$ equivalent to $\psi$? \\ \quad They are semantically equivalent. \item Does $\varphi$ semantically entail $\psi$? \\ \quad Yes. \item Does $\psi$ semantically entail $\varphi$? \\ \quad Yes.
\end{enumerate}
|