|
|
\begin{prooftree} \AxiomC{$1. \; \clause{a;\lnot c;\lnot e$}} \AxiomC{$4. \; \clause{\lnot b;d;\lor e$}} \BinaryInfC{$\clause{a;\lnot b;\lnot c;d}$} \AxiomC{$7. \; \clause{c;d}$} \BinaryInfC{$\clause{a;\lnot b;d}$} \AxiomC{$5. \; \clause{\lnot b;\lnot d}$} \BinaryInfC{$\clause{a;\lnot b}$} \AxiomC{$8. \; \clause{a;b}$} \BinaryInfC{$\clause{a}$} \end{prooftree}
\begin{dplltabular}{6} \dpllStep{(1)|11|12|13|14} \dpllDecL{0 |0 |0 |0 |0 }
\dpllAssi{-| $a$| $a, \lnot e$| $a, \lnot e, b$| \makecell{$a, \lnot e$,\\ $ b, \lnot d$}}
\dpllClause{1}{$a, \lnot c, \lnot e$} {$a, \lnot c, \lnot e$|\done|\done|\done|\done}
\dpllClause{2}{$\lnot a, \lnot e$} {$\lnot a, \lnot e$|$\lnot e$|\done|\done|\done}
\dpllClause{3}{$b,e$} {$b,e$|$b,e$|$b$|\done|\done}
\dpllClause{4}{$\lnot b,d,e$} {$\lnot b,d,e$|$\lnot b,d,e$|$\lnot b,d$|$d$|\conflict}
\dpllClause{5}{$\lnot b,\lnot d$} {$\lnot b,\lnot d$|$\lnot b,\lnot d$|$\lnot b,\lnot d$|$\lnot d$|\done}
\dpllClause{6}{$c,\lnot d$} {$c,\lnot d$|$c,\lnot d$|$c,\lnot d$|$c,\lnot d$|\done}
\dpllClause{7}{$c,d$} {$c,d$|$c,d$|$c,d$|$c,d$|$c$}
\dpllClause{8}{$a,b$} {$a,b$|\done|\done|\done|\done}
\dpllClause{9}{$a$} {$a$|\done|\done|\done|\done}
\dpllBCP {$a$|$\lnot e$|$b$|$\lnot d$|-} \dpllPL {-|-|-|-|-} \dpllDeci{-|-|-|-|UNSAT} \end{dplltabular}
\begin{conflictgraph} \node (0){}; \node[base node] (A) [right of=0] {$a$}; \node[base node] (notE) [right of=A] {$\lnot e$}; \node[base node] (B) [right of=notE] {$b$}; \node[base node] (D) [above right of=B] {$d$}; \node[base node] (notD) [below right of=B] {$\lnot d$}; \node[base node] (bot) [above right of=notD] {$\bot$}; \path[] (0) edge [] node {9} (A) (A) edge [] node {2} (notE) (notE) edge [] node {3} (B) (B) edge [] node {4} (D) (notE) edge [bend left] node {4} (D) (B) edge [] node {5} (notD) (notD) edge [] node {} (bot) (D) edge [] node {} (bot); \end{conflictgraph}
\begin{prooftree} \AxiomC{$5. \; \clause{\lnot b;\lnot d$}} \AxiomC{$4. \; \clause{\lnot b;d;\lor e$}} \BinaryInfC{$\clause{\lnot b;e}$} \AxiomC{$3. \; \clause{b;e}$} \BinaryInfC{$\clause{e}$} \AxiomC{$2. \; \clause{\lnot a;\lnot e}$} \BinaryInfC{$\clause{\lnot a}$} \AxiomC{$8. \; \clause{a}$} \BinaryInfC{$\clause{\bot}$} \end{prooftree}
|