|
|
<!doctype html>
<title>CodeMirror: Mathematica mode</title> <meta charset="utf-8"/> <link rel=stylesheet href="../../doc/docs.css">
<link rel=stylesheet href=../../lib/codemirror.css> <script src=../../lib/codemirror.js></script> <script src=../../addon/edit/matchbrackets.js></script> <script src=mathematica.js></script> <style type=text/css> .CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;} </style> <div id=nav> <a href="https://codemirror.net/5"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png" alt=""></a>
<ul> <li><a href="../../index.html">Home</a> <li><a href="../../doc/manual.html">Manual</a> <li><a href="https://github.com/codemirror/codemirror5">Code</a> </ul> <ul> <li><a href="../index.html">Language modes</a> <li><a class=active href="#">Mathematica</a> </ul> </div>
<article> <h2>Mathematica mode</h2>
<textarea id="mathematicaCode"> (* example Mathematica code *) (* Dualisiert wird anhand einer Polarität an einer Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also mit $det(Q) \neq 0$), z.B. die Identitätsmatrix. $p$ ist eine Liste von Polynomen - ein Ideal. *) dualize::"singular" = "Q must be regular: found Det[Q]==0."; dualize[ Q_, p_ ] := Block[ { m, n, xv, lv, uv, vars, polys, dual }, If[Det[Q] == 0, Message[dualize::"singular"], m = Length[p]; n = Length[Q] - 1; xv = Table[Subscript[x, i], {i, 0, n}]; lv = Table[Subscript[l, i], {i, 1, m}]; uv = Table[Subscript[u, i], {i, 0, n}]; (* Konstruiere Ideal polys. *) If[m == 0, polys = Q.uv, polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv] ]; (* Eliminiere die ersten n + 1 + m Variablen xv und lv aus dem Ideal polys. *) vars = Join[xv, lv]; dual = GroebnerBasis[polys, uv, vars]; (* Ersetze u mit x im Ergebnis. *) ReplaceAll[dual, Rule[u, x]] ] ] </textarea>
<script> var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), { mode: 'text/x-mathematica', lineNumbers: true, matchBrackets: true }); </script>
<p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p> </article>
|