181 lines
6.4 KiB
181 lines
6.4 KiB
import gymnasium as gym
|
|
import numpy as np
|
|
|
|
|
|
from gymnasium.spaces import Dict, Box
|
|
from collections import deque
|
|
from ray.rllib.utils.numpy import one_hot
|
|
|
|
class OneHotWrapper(gym.core.ObservationWrapper):
|
|
def __init__(self, env, vector_index, framestack):
|
|
super().__init__(env)
|
|
self.framestack = framestack
|
|
# 49=7x7 field of vision; 11=object types; 6=colors; 3=state types.
|
|
# +4: Direction.
|
|
self.single_frame_dim = 49 * (11 + 6 + 3) + 4
|
|
self.init_x = None
|
|
self.init_y = None
|
|
self.x_positions = []
|
|
self.y_positions = []
|
|
self.x_y_delta_buffer = deque(maxlen=100)
|
|
self.vector_index = vector_index
|
|
self.frame_buffer = deque(maxlen=self.framestack)
|
|
for _ in range(self.framestack):
|
|
self.frame_buffer.append(np.zeros((self.single_frame_dim,)))
|
|
|
|
self.observation_space = Dict(
|
|
{
|
|
"data": gym.spaces.Box(0.0, 1.0, shape=(self.single_frame_dim * self.framestack,), dtype=np.float32),
|
|
"avail_actions": gym.spaces.Box(0, 10, shape=(env.action_space.n,), dtype=int),
|
|
}
|
|
)
|
|
|
|
|
|
print(F"Set obersvation space to {self.observation_space}")
|
|
|
|
|
|
def observation(self, obs):
|
|
# Debug output: max-x/y positions to watch exploration progress.
|
|
# print(F"Initial observation in Wrapper {obs}")
|
|
if self.step_count == 0:
|
|
for _ in range(self.framestack):
|
|
self.frame_buffer.append(np.zeros((self.single_frame_dim,)))
|
|
if self.vector_index == 0:
|
|
if self.x_positions:
|
|
max_diff = max(
|
|
np.sqrt(
|
|
(np.array(self.x_positions) - self.init_x) ** 2
|
|
+ (np.array(self.y_positions) - self.init_y) ** 2
|
|
)
|
|
)
|
|
self.x_y_delta_buffer.append(max_diff)
|
|
print(
|
|
"100-average dist travelled={}".format(
|
|
np.mean(self.x_y_delta_buffer)
|
|
)
|
|
)
|
|
self.x_positions = []
|
|
self.y_positions = []
|
|
self.init_x = self.agent_pos[0]
|
|
self.init_y = self.agent_pos[1]
|
|
|
|
|
|
self.x_positions.append(self.agent_pos[0])
|
|
self.y_positions.append(self.agent_pos[1])
|
|
|
|
image = obs["data"]
|
|
|
|
# One-hot the last dim into 11, 6, 3 one-hot vectors, then flatten.
|
|
objects = one_hot(image[:, :, 0], depth=11)
|
|
colors = one_hot(image[:, :, 1], depth=6)
|
|
states = one_hot(image[:, :, 2], depth=3)
|
|
|
|
all_ = np.concatenate([objects, colors, states], -1)
|
|
all_flat = np.reshape(all_, (-1,))
|
|
direction = one_hot(np.array(self.agent_dir), depth=4).astype(np.float32)
|
|
single_frame = np.concatenate([all_flat, direction])
|
|
self.frame_buffer.append(single_frame)
|
|
|
|
#obs["one-hot"] = np.concatenate(self.frame_buffer)
|
|
tmp = {"data": np.concatenate(self.frame_buffer), "avail_actions": obs["avail_actions"] }
|
|
return tmp#np.concatenate(self.frame_buffer)
|
|
|
|
|
|
class MiniGridEnvWrapper(gym.core.Wrapper):
|
|
def __init__(self, env, shield):
|
|
super(MiniGridEnvWrapper, self).__init__(env)
|
|
self.max_available_actions = env.action_space.n
|
|
self.observation_space = Dict(
|
|
{
|
|
"data": env.observation_space.spaces["image"],
|
|
"avail_actions" : Box(0, 10, shape=(self.max_available_actions,), dtype=np.int8),
|
|
}
|
|
)
|
|
|
|
self.shield = shield
|
|
|
|
|
|
def create_action_mask(self):
|
|
coordinates = self.env.agent_pos
|
|
view_direction = self.env.agent_dir
|
|
print(F"Agent pos is {self.env.agent_pos} and direction {self.env.agent_dir} ")
|
|
cur_pos_str = f"[!AgentDone\t& xAgent={coordinates[0]}\t& yAgent={coordinates[1]}\t& viewAgent={view_direction}]"
|
|
|
|
allowed_actions = []
|
|
|
|
|
|
# Create the mask
|
|
# If shield restricts action mask only valid with 1.0
|
|
# else set everything to one
|
|
mask = np.array([0.0] * self.max_available_actions, dtype=np.int8)
|
|
|
|
# if cur_pos_str in self.shield:
|
|
# allowed_actions = self.shield[cur_pos_str]
|
|
# for allowed_action in allowed_actions:
|
|
# index = allowed_action[0]
|
|
# mask[index] = 1.0
|
|
# else:
|
|
# for index in len(mask):
|
|
# mask[index] = 1.0
|
|
|
|
|
|
print(F"Allowed actions for position {coordinates} and view {view_direction} are {allowed_actions}")
|
|
mask[0] = 1.0
|
|
return mask
|
|
|
|
def reset(self, *, seed=None, options=None):
|
|
obs, infos = self.env.reset()
|
|
return {
|
|
"data": obs["image"],
|
|
"avail_actions": np.array([0.0] * self.max_available_actions, dtype=np.int8)
|
|
}, infos
|
|
|
|
def step(self, action):
|
|
print(F"Performed action in step: {action}")
|
|
orig_obs, rew, done, truncated, info = self.env.step(action)
|
|
|
|
actions = self.create_action_mask()
|
|
#print(F"Original observation is {orig_obs}")
|
|
obs = {
|
|
"data": orig_obs["image"],
|
|
"avail_actions": actions,
|
|
}
|
|
|
|
#print(F"Info is {info}")
|
|
return obs, rew, done, truncated, info
|
|
|
|
|
|
|
|
|
|
class ImgObsWrapper(gym.core.ObservationWrapper):
|
|
"""
|
|
Use the image as the only observation output, no language/mission.
|
|
|
|
Example:
|
|
>>> import gymnasium as gym
|
|
>>> from minigrid.wrappers import ImgObsWrapper
|
|
>>> env = gym.make("MiniGrid-Empty-5x5-v0")
|
|
>>> obs, _ = env.reset()
|
|
>>> obs.keys()
|
|
dict_keys(['image', 'direction', 'mission'])
|
|
>>> env = ImgObsWrapper(env)
|
|
>>> obs, _ = env.reset()
|
|
>>> obs.shape
|
|
(7, 7, 3)
|
|
"""
|
|
|
|
def __init__(self, env):
|
|
"""A wrapper that makes image the only observation.
|
|
|
|
Args:
|
|
env: The environment to apply the wrapper
|
|
"""
|
|
super().__init__(env)
|
|
self.observation_space = env.observation_space.spaces["image"]
|
|
print(F"Set obersvation space to {self.observation_space}")
|
|
|
|
def observation(self, obs):
|
|
#print(F"obs in img obs wrapper {obs}")
|
|
tmp = {"data": obs["image"], "Test": obs["Test"]}
|
|
|
|
return tmp
|