You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
5.8 KiB
178 lines
5.8 KiB
# from typing import Dict
|
|
# from ray.rllib.env.base_env import BaseEnv
|
|
# from ray.rllib.evaluation import RolloutWorker
|
|
# from ray.rllib.evaluation.episode import Episode
|
|
# from ray.rllib.evaluation.episode_v2 import EpisodeV2
|
|
# from ray.rllib.policy import Policy
|
|
# from ray.rllib.utils.typing import PolicyID
|
|
|
|
import gymnasium as gym
|
|
|
|
import minigrid
|
|
# import numpy as np
|
|
|
|
# import ray
|
|
from ray.tune import register_env
|
|
from ray.rllib.algorithms.ppo import PPOConfig
|
|
from ray.rllib.algorithms.dqn.dqn import DQNConfig
|
|
# from ray.rllib.algorithms.callbacks import DefaultCallbacks
|
|
from ray.tune.logger import pretty_print
|
|
from ray.rllib.models import ModelCatalog
|
|
|
|
|
|
from TorchActionMaskModel import TorchActionMaskModel
|
|
from Wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
|
|
from helpers import parse_arguments, create_log_dir
|
|
from ShieldHandlers import MiniGridShieldHandler
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from ray.tune.logger import TBXLogger
|
|
|
|
# class MyCallbacks(DefaultCallbacks):
|
|
# def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None:
|
|
# # print(F"Epsiode started Environment: {base_env.get_sub_environments()}")
|
|
# env = base_env.get_sub_environments()[0]
|
|
# episode.user_data["count"] = 0
|
|
# # print("On episode start print")
|
|
# # print(env.printGrid())
|
|
# # print(worker)
|
|
# # print(env.action_space.n)
|
|
# # print(env.actions)
|
|
# # print(env.mission)
|
|
# # print(env.observation_space)
|
|
# # img = env.get_frame()
|
|
# # plt.imshow(img)
|
|
# # plt.show()
|
|
|
|
|
|
# def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy] | None = None, episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None:
|
|
# episode.user_data["count"] = episode.user_data["count"] + 1
|
|
# env = base_env.get_sub_environments()[0]
|
|
# # print(env.printGrid())
|
|
|
|
# def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2 | Exception, env_index: int | None = None, **kwargs) -> None:
|
|
# # print(F"Epsiode end Environment: {base_env.get_sub_environments()}")
|
|
# env = base_env.get_sub_environments()[0]
|
|
# #print("On episode end print")
|
|
# #print(env.printGrid())
|
|
|
|
|
|
|
|
def shielding_env_creater(config):
|
|
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
|
|
framestack = config.get("framestack", 4)
|
|
args = config.get("args", None)
|
|
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt"
|
|
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism"
|
|
|
|
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula)
|
|
|
|
env = gym.make(name)
|
|
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator)
|
|
# env = minigrid.wrappers.ImgObsWrapper(env)
|
|
# env = ImgObsWrapper(env)
|
|
env = OneHotShieldingWrapper(env,
|
|
config.vector_index if hasattr(config, "vector_index") else 0,
|
|
framestack=framestack
|
|
)
|
|
|
|
|
|
return env
|
|
|
|
|
|
|
|
def register_minigrid_shielding_env(args):
|
|
env_name = "mini-grid"
|
|
register_env(env_name, shielding_env_creater)
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"shielding_model",
|
|
TorchActionMaskModel
|
|
)
|
|
|
|
|
|
def ppo(args):
|
|
register_minigrid_shielding_env(args)
|
|
|
|
config = (PPOConfig()
|
|
.rollouts(num_rollout_workers=args.workers)
|
|
.resources(num_gpus=0)
|
|
.environment(env="mini-grid", env_config={"name": args.env, "args": args})
|
|
.framework("torch")
|
|
#.callbacks(MyCallbacks)
|
|
.rl_module(_enable_rl_module_api = False)
|
|
.debugging(logger_config={
|
|
"type": TBXLogger,
|
|
"logdir": create_log_dir(args)
|
|
})
|
|
.training(_enable_learner_api=False ,model={
|
|
"custom_model": "shielding_model",
|
|
"custom_model_config" : {"no_masking": args.no_masking}
|
|
}))
|
|
|
|
algo =(
|
|
|
|
config.build()
|
|
)
|
|
|
|
algo.eva
|
|
|
|
for i in range(args.iterations):
|
|
result = algo.train()
|
|
print(pretty_print(result))
|
|
|
|
if i % 5 == 0:
|
|
checkpoint_dir = algo.save()
|
|
print(f"Checkpoint saved in directory {checkpoint_dir}")
|
|
|
|
|
|
def dqn(args):
|
|
register_minigrid_shielding_env(args)
|
|
|
|
|
|
config = DQNConfig()
|
|
config = config.resources(num_gpus=0)
|
|
config = config.rollouts(num_rollout_workers=args.workers)
|
|
config = config.environment(env="mini-grid", env_config={"name": args.env, "args": args })
|
|
config = config.framework("torch")
|
|
#config = config.callbacks(MyCallbacks)
|
|
config = config.rl_module(_enable_rl_module_api = False)
|
|
config = config.debugging(logger_config={
|
|
"type": TBXLogger,
|
|
"logdir": create_log_dir(args)
|
|
})
|
|
config = config.training(hiddens=[], dueling=False, model={
|
|
"custom_model": "shielding_model",
|
|
"custom_model_config" : {"no_masking": args.no_masking}
|
|
})
|
|
|
|
algo = (
|
|
config.build()
|
|
)
|
|
|
|
for i in range(args.iterations):
|
|
result = algo.train()
|
|
print(pretty_print(result))
|
|
|
|
if i % 5 == 0:
|
|
print("Saving checkpoint")
|
|
checkpoint_dir = algo.save()
|
|
print(f"Checkpoint saved in directory {checkpoint_dir}")
|
|
|
|
|
|
def main():
|
|
import argparse
|
|
args = parse_arguments(argparse)
|
|
|
|
if args.algorithm == "ppo":
|
|
ppo(args)
|
|
elif args.algorithm == "dqn":
|
|
dqn(args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|