You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
68 lines
2.5 KiB
68 lines
2.5 KiB
import stormpy
|
|
import stormpy.core
|
|
import stormpy.simulator
|
|
|
|
import stormpy.shields
|
|
|
|
import stormpy.examples
|
|
import stormpy.examples.files
|
|
|
|
|
|
"""
|
|
Simulating a model with the usage of a post shield
|
|
"""
|
|
|
|
def example_post_shield_simulator():
|
|
path = stormpy.examples.files.prism_mdp_lava_simple
|
|
formula_str = "<ShieldFileName, PostSafety, gamma=0.9> Pmax=? [G !\"AgentIsInLavaAndNotDone\"]; Pmax=? [ F \"AgentIsInLavaAndNotDone\" ];"
|
|
|
|
program = stormpy.parse_prism_program(path)
|
|
formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
|
|
|
|
options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
|
|
options.set_build_state_valuations(True)
|
|
options.set_build_choice_labels(True)
|
|
options.set_build_all_labels()
|
|
model = stormpy.build_sparse_model_with_options(program, options)
|
|
|
|
initial_state = model.initial_states[0]
|
|
assert initial_state == 0
|
|
result = stormpy.model_checking(model, formulas[0])
|
|
result2 = stormpy.model_checking(model, formulas[1], extract_scheduler=True)
|
|
|
|
assert result.has_shield
|
|
assert result2.has_scheduler
|
|
|
|
shield = result.shield
|
|
scheduler = result2.scheduler
|
|
|
|
post_scheduler = shield.construct()
|
|
|
|
simulator = stormpy.simulator.create_simulator(model, seed=42)
|
|
|
|
while not simulator.is_done():
|
|
current_state = simulator.get_current_state()
|
|
state_string = model.state_valuations.get_string(current_state)
|
|
# print(F"Simulator is in state {state_string}.")
|
|
|
|
sched_choice = scheduler.get_choice(current_state).get_deterministic_choice()
|
|
# print(F"Scheduler choice {model.choice_labeling.get_labels_of_choice(model.get_choice_index(current_state, sched_choice))}")
|
|
|
|
corrections = post_scheduler.get_choice(current_state).choice_map
|
|
# print(corrections)
|
|
correction_labels = [(model.get_label_of_choice(current_state, correction[0]), model.get_label_of_choice(current_state, correction[1])) for correction in corrections]
|
|
# print(F"Correction Choices are {correction_labels}.")
|
|
|
|
applied_correction = next((x[1] for x in corrections if x[0] == sched_choice), None)
|
|
|
|
if applied_correction != None and applied_correction != sched_choice:
|
|
print(F"Correction applied changed choice {sched_choice} to {applied_correction}")
|
|
sched_choice = applied_correction
|
|
|
|
observation, reward = simulator.step(sched_choice)
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
example_post_shield_simulator()
|