43 lines
1.3 KiB
43 lines
1.3 KiB
import stormpy
|
|
import stormpy.core
|
|
import stormpy.simulator
|
|
|
|
|
|
import stormpy.shields
|
|
|
|
import stormpy.examples
|
|
import stormpy.examples.files
|
|
|
|
|
|
def optimal_shield_extraction():
|
|
path = stormpy.examples.files.prism_smg_robot
|
|
formula_str = "<Optimal> <<sh>> R{\"travel_costs\"}min=? [ LRA ]"
|
|
|
|
program = stormpy.parse_prism_program(path)
|
|
formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
|
|
|
|
options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
|
|
options.set_build_state_valuations(True)
|
|
options.set_build_choice_labels(True)
|
|
options.set_build_all_labels()
|
|
model = stormpy.build_sparse_model_with_options(program, options)
|
|
|
|
shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.OPTIMAL)
|
|
result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
|
|
|
|
assert result.has_scheduler
|
|
assert result.has_shield
|
|
|
|
shield = result.shield
|
|
|
|
state_ids = [x for x in model.states]
|
|
scheduler = shield.construct()
|
|
|
|
for state_id in state_ids[0:50]:
|
|
choices = scheduler.get_choice(state_id)
|
|
print(F"Corrections in state {state_id}, are {choices.choice_map} ")
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
optimal_shield_extraction()
|